首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two rapid, pure phase encode, centric scan, Single Point Ramped Imaging with T1-Enhancement (SPRITE) MRI methods are described. Each retains the benefits of the standard SPRITE method, most notably the ability to image short T2* systems, while increasing the sensitivity and generality of the technique. The Spiral-SPRITE method utilizes a modified Archimedean spiral k-space trajectory. The Conical-SPRITE method utilizes a system of spirals mapped to conical surfaces to sample the k-space cube. The sampled k-space points are naturally Cartesian grid points, eliminating the requirement of a re-gridding procedure prior to image reconstruction. The effects of transient state behaviour on image resolution and signal/noise are explored.  相似文献   

2.
The single-point ramped imaging with T1 enhancement (SPRITE) imaging technique has proven to be a very robust and flexible method for the study of a wide range of systems with short signal lifetimes. As a pure phase encoding technique, SPRITE is largely immune to image distortions generated by susceptibility variations, chemical shift and paramagnetic impurities. In addition, it avoids the line width restrictions on resolution common to time-based sampling, frequency encoding methods. The standard SPRITE technique is however a longitudinal steady-state imaging method; the image intensity is related to the longitudinal steady state, which not only decreases the signal-to-noise ratio, but also introduces many parameters into the image signal equation. A centric scan strategy for SPRITE removes the longitudinal steady state from the image intensity equation and increases the inherent image intensity. Two centric scan SPRITE methods, that is, Spiral-SPRITE and Conical-SPRITE, with fast acquisition and greatly reduced gradient duty cycle, are outlined. Multiple free induction decay (FID) points may be acquired during SPRITE sampling for signal averaging to increase signal-to-noise ratio or for T2* and spin density mapping without an increase in acquisition time. Experimental results show that most porous sedimentary rock and concrete samples have a single exponential T2* decay due to susceptibility difference-induced field distortion. Inhomogeneous broadening thus dominates, which suggests that spin density imaging can be easily obtained by SPRITE.  相似文献   

3.
The theoretical dependence of the resolution on the relationship of sampling time to transverse relaxation time (T2) for frequency-encoded, one-dimensional NMR imaging using constant field gradients has been investigated. A resolution function that is explicitly dependent on the sampling time is derived, and it is shown that the observed image of an object can be written as a convolution of the sample magnetization with this resolution function. This function is explicitly calculated for two cases of interest: (1) for sampling times much shorter than T2, and (2) for sampling times much longer than T2. These cases are illustrated for two examples: (1) a uniform magnetic bar, and (2) uniform periodic magnetic bars. When oscillating gradients are utilized, these results still hold in the limit of slow oscillation. The resolution in phase-encoded NMR imaging is not explicitly dependent on the sampling time.  相似文献   

4.
The combination of contrast preparation with centric-scan SPRITE imaging readout is investigated. The main benefit of SPRITE, its ability to image objects with short T2, is retained. We demonstrate T1 and T2 mapping as examples of magnetisation preparation followed by magnetisation storage and spatially resolved encoding. A strategy for selection of the most advantageous imaging parameters for contrast mapping is presented.  相似文献   

5.
Sectoral sampling in centric-scan SPRITE magnetic resonance imaging   总被引:4,自引:4,他引:0  
A new approach to the construction of k-space trajectories for centric-scan SPRITE in both 2D and 3D is presented. All benefits of previous SPRITE methods are retained, most importantly the ability to image objects with short T*(2). This new approach gives more flexibility in the choice of number of interleaves with points more evenly distributed across k-space. All these improvements positively contribute to image quality and resolution, which can be also traded off against experimental speed. Sectoral sampling will have significant benefits for magnetisation preparation contrast imaging.  相似文献   

6.
7.
We discuss the effects of motion on the computation of the myocardial transverse relaxation time by use of magnetic resonance imaging. Equations describing its behavior are derived and illustrated graphically under different conditions. It is shown that the myocardial transverse relaxation time calculated from magnetic resonance images depends on the actual myocardial transverse relaxation time ex vivo (T2) as well as the phase of the cardiac cycle in which it is computed, heart rate, cardiac wall velocity, choice of spin-echoes used in the calculation, and the spin-echo times employed. In particular, the error in T2 decreases when both the first and third echoes are employed in the calculation, rather than only the first two echoes. However, the myocardial transverse relaxation time is more strongly dependent on heart rate in the former case rather than in the latter. Furthermore, the error in T2, when both the first and second spin echoes are used in the calculation, is seen to increase as the spin-echo time shortens. On the other hand, the error in T2 decreases for shorter spin-echo times when both the first and third spin echoes are used instead. The results are relevant to the noninvasive assessment of ischemia, cardiac transplantation rejection, and other myocardial disorders.  相似文献   

8.
A total of 4302 healthy blood donors were screened for elevated serum ferritin and transferrin saturation. Fifteen had increased serum ferritin at a follow-up examination. Five relatives of these donors also entered the study. Eleven patients had elevated liver iron concentrations, while five had normal liver iron concentrations. The R2 relaxation rate in the liver was first measured with a conventional multi-spin-echo imaging sequence, and then by a volume-selective spectroscopic multi-spin-echo sequence, in order to achieve a minimum echo time of 4 msec. No correlation was found between the relaxation rate R2 and the liver iron concentration, when R2 was calculated from the imaging data. Multi-exponential transverse relaxation could be resolved when the spectroscopic sequence was used. A strong correlation between the initial slope of the relaxation curve and the liver iron concentration was found (r = 0.90, p < 0.001). Signal intensity ratios between liver and muscle were calculated from the first three echoes in the multi-echo imaging sequence, and from a gradient echo sequence. A strong correlation between the logarithm of the signal intensity ratios and the liver iron concentration was found. Although both spectroscopic T2 relaxation time measurements and signal intensity ratios could be used to quantify liver iron concentration, the gradient echo imaging seemed to be the best choice. Gradient echo imaging could be performed during a single breath hold, so motion artifacts could be avoided. The accuracy of liver iron concentration estimates from signal intensity ratios in the gradient echo images was about 35%.  相似文献   

9.
10.
Changes in longitudinal relaxation time (T1) and proton density (PD) are sensitive indicators of microstructural alterations associated with various central nervous system diseases as well as brain maturation and aging. In this work, we introduce a new approach for rapid and accurate high-resolution (HR) or ultra HR (UHR) mapping of T1 and apparent PD (APD) of the brain with correction of radiofrequency field, B1, inhomogeneities. The four-angle method (FAM) uses four spoiled-gradient recalled-echo (SPGR) images acquired at different flip angles (FA) and short repetition times (TRs). The first two SPGR images are acquired at low-spatial resolution and used to accurately map the active B1+ field with the recently introduced steady-state double angle method (SS-DAM). The estimated B1+ map is used in conjunction with the two other SPGR images, acquired at HR or UHR, to map T1 and APD. The method is evaluated with numerical, phantom, and in-vivo imaging measurements. Furthermore, we investigated imaging acceleration methods to further shorten the acquisition time. Our results indicate that FAM provides an accurate method for simultaneous HR or UHR mapping of T1 and APD in human brain in clinical high-field MRI. Derived parameter maps without B1+correction suffer from large inaccuracies, but this issue is well-corrected through use of the SS-DAM. Furthermore, the use of SPGR imaging with short TR and phased-array coil acquisition permits substantial imaging acceleration and enables robust HR or UHR T1 and APD mapping in a clinically acceptable time frame, with whole brain coverage obtained in less than 2 min or 5 min, respectively. The method exhibits high reproducibility and benefits from the use of the conventional SPGR sequence, available in all preclinical and clinical MRI machines, and very simple modeling to address a critical outstanding issue in neuroimaging.  相似文献   

11.
12.
13.
14.
15.
Magnetic resonance imaging has rarely been applied to rigid polymeric materials, due primarily to the strong dipolar coupling and short signal lifetimes inherent in these materials. SPRITE (single point ramped imaging withT 1 enhancement) (B. J. Balcom, R. P. MacGregor, S. D. Beyea, D. P. Green, R. L. Armstrong, T. W. Bremner: J. Magn. Reson. A123, 131–134, 1996) is particularly well suited to imaging solid materials. With SPRITE, the only requirement is thatT 2* be long enough so that the signal can be phase-encoded. The minimum phase encoding time is limited by the maximum gradient strength available and by the instrument deadtime. At present this is usually tens of microseconds and will only improve with refinements in technology. We have used the SPRITE sequence in conjunction with raising the sample temperature to obtain images of rigid polymers that have largely frustrated conventional imaging methods. This approach provides a straightforward and reliable method for imaging a class of samples that, up until now, have been very difficult to image.  相似文献   

16.
Various analogs of NMR and MRI are now technically possible in optics; specifically, high-resolution laser-pulse shaping and complex pulse sequence generation with well-defined phase shifts has been demonstrated. Here we summarize this technology and discuss the potential for these methods to enhance optical functional imaging, competing with (and surpassing?) what is possible by functional MRI.  相似文献   

17.
18.
19.
Single point imaging methods such as SPRITE are often the technique of choice for imaging fast-relaxing nuclei in solids. Single point imaging sequences based on SPRITE in their conventional form are ill-suited for in vivo applications since the acquisition time is long and the SAR is high. A new sequence design is presented employing variable repetition times and variable flip angles in order to improve the characteristics of SPRITE for in vivo applications. The achievable acquisition time savings as well as SAR reductions and/or SNR increases afforded by this approach were investigated using a resolution phantom as well as PSF simulations. Imaging results in phantoms indicate that acquisition times may be reduced by up to 70% and the SAR may be reduced by 40% without an appreciable loss of image quality.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号