首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonempirical calculations of the electronic structure of the [PF5]2– ion and of the clusters [M5PF5]3+ and [M4PF5]2+ (M=H+, Li+, Na+) have been carried out. The character of the dependence of the geometric parameters of the [PF5]2– ion on the properties and structure of the second coordination sphere has been discussed.Institute of Chemistry, Academy of Sciences of the USSR, Far-Eastern Branch. Translated from Zhurnal Strukturnoi Khimii, Vol. 32, No. 2, pp. 17–22, March–April, 1991.  相似文献   

2.
The crystal structure of Na3NpO2(OOCCH3)3ClO4 · H2O was studied by single-crystal X-ray diffraction method. The structure is composed of the complex anions NpO2(OOCCH3)3]2−, perchlorate anions, Na cations, and water molecules. The oxygen environment of Np(V) is a hexagonal bipyramid whose equatorial plane is formed by the oxygen atoms of three acetate ions. In addition to the acetate anions, the structure contains the perchlorate ion whose oxygen atoms, except for one, are included in the coordination environment of Na+ cations.__________Translated from Koordinatsionnaya Khimiya, Vol. 31, No. 8, 2005, pp. 636–640.Original Russian Text Copyright © 2005 by Charushnikova, Fedoseev, Starikova.  相似文献   

3.
Li6[TeMo6O24] · 18 H2O is triclinic (space group P1 , a = 1 041.7(1), b = 1 058.6(1), c = 1 070.8(1) pm, α = 61.08(1), β = 60.44(1), γ = 73.95(1)°). Single crystal X-ray structure analysis (Z = 1, 295 K, 317 parameters, 3 973 reflections, Rg = 0.0250) revealed an infinite branched chain of edge-sharing Li coordination polyhedra to be the prominent structural feature. One of the four crystallographically independent Li+ is coordinated octahedrally. The coordination polyhedra of the remaining Li+ are distorted trigonal bipyramids. Only three unique oxygen atoms (O(9), O(10), O(12)) of the centrosymmetric [TeMo6O24]6? anion are bound to Li+. The further positions in the coordination spheres of the Li+ are occupied by water molecules. Intermolecular hydrogen bonds involve mainly oxygen atoms of the [TeMo6O24]6? anion as nearly equivalent proton acceptors without regard to their different bonding modes to Te and Mo, respectively. Li6[TeMo6O24] · Te(OH)6 · 18 H2O crystallizes monoclinically in space group P21/n with Z = 4, a = 994.1(3), b = 2 344.8(10), c = 1 764.9(4) pm, and β = 91.36(4)°. Single crystal structure analysis with least squares refinement of 627 parameters (5 900 reflections, 295 K) converged to Rg = 0.0324. There are six unique Li+ cations. The coordination polyhedra of Li(1), Li(2), Li(3), and Li(4) are linked by common edges to yield an eight membered centrosymmetric strand. The coordination polyhedra of the remaining two Li+ sites (Li(5), Li(6)) are connected to a dimeric unit via a common corner. All oxygen atoms of the Te(OH)6 molecule are involved in the coordination of Li+. However, only three oxygen atoms (O(13), O(18), O(23)) of the [TeMo6O24]6? anion which lacks crystallographic symmetry are involved in the coordination of Li+. The oxygen atoms of the anion act as proton acceptors in hydrogen bonds of predominantly medium strength. Te(OH)6 molecules and [TeMo6O24]6? anions connected by strong hydrogen bonds form an infinite chain.  相似文献   

4.
The structures of two complexes, [Ph3PCH2Ph]+[Bu3SnCl2] and [Ph3AsCH2COPh]+[Ph3SnCl2], have been determined by X-ray diffraction. Both materials are monoclinic, space group P21/c. Unit cell data for [Ph3PCH2Ph]+−[Bu3SnCl2] are a 9.8521(6), b 16.9142(4), c 22.3517(7) Å, β 91.4235(9)°; and for [Ph3AsCH2COPh]+[Ph3SnCl2] a 34.9760(3), b 11.1290(5), c 24.2410(2) Å, β 108.56(2)°, and both consist of the component ionic species. The organotin anions each have trigonal bipyramidal geometry with equatorial organic groups and axial halogens. In the [Ph3SnCl2] anion the two Sn---Cl bond distances are the same (2.58(1) and 2.60(1) Å), but in [Bu3SnCl2], as in [Me3SnCl2], they are substantially different (2.573(7) and 2.689(6) Å). The Sn---C bond distances also vary: [Ph3SnCl2] 2.15(4), 2.16(3) and 2.25(5); [Bu3SnCl2] 2.21(1), 2.20(2) and 2.29(2) Å. Tin-119 Mössbauer data for these and several other similar complexes are also reported.  相似文献   

5.
The dehydrated form of (Li,Na)-substituted analcime, Li1.30Na0.53[Al1.83Si4.17O12], has been prepared and investigated with single crystal X-ray diffraction: a = 32.167(6) Å, b = 18.551(2) Å, c = 11.693(2) Å; β = 90.06(1)°, V = 6978(1) Å3, Z = 24, space group C2. The structure was analyzed through considering the aluminosilicate framework as a system of tubes composed from corrugated 6-membered rings joint by triples of tetrahedra. Volume decrease by 6.5% and trigonal distortion of the structure are explained by the localization of the non-framework cations in new unusual positions. On dehydration of Li, Na-analcime, 67% of Na+ and 20% of Li+ migrated from the standard M-positions at the periphery of the tubes into essentially different positions NaW and LiL situated on the axes of the tubes. Among the total of the fixed tube positions— 12NaW and 16LiL — one half is aggregated in the tubes parallel to [001] and has a planar three-fold coordination by framework O-atoms. The configuration and cation population of the tubes in other directions follow the motif of the “basic” system.  相似文献   

6.
Relativistic TDDFT calculations including spin orbit interactions via the ZORA approximation and solvent effects were carried out on the [Mo6X8L6]2− X = Cl, Br, I ; L = F, Cl, Br, I clusters. These calculations indicate that the closely spaced lowest excited states are largely centered on the cubic [Mo6X8]4+ core. Thus, our calculations and the electronic similarities with the strongly luminescent [Mo6Cl8Cl6]2−, [Mo6Br8Br6]2− and [Mo6I8I6]2− clusters, suggest that the clusters [Mo6Cl8F6]2−, [Mo6Br8F6]2−, [Mo6I8F6]2−, [Mo6I8Cl6]2− and [Mo6I8Br6]2− studied here might be also luminescent. The calculated bond energies and reactivity indexes indicate that the most labile clusters are those with axial iodide ligands.  相似文献   

7.
Raman and infrared line parameters of Zn(NO3)2-H2O systems ranging from dilute solutions (25°C) to ionic liquids of low water content (75°C) are reported. At 25°C the solutions contain a very low concentration of inner sphere [Zn(ONO2)(H2O)5]+, outer sphere [Zn(H2O)6]2+[NO3], Zn(H2O) 6 2+ , and NO 3 (aq.). In the ionic liquids the ion triplet also exists. Manifestations of a change from the octahedral coordination of zinc to tetrahedral coordination when the water content is very low include the appearance of a 285 cm–1 band from the zinc nitrate bond and a shift to higher frequencies of the band from zinc-water.  相似文献   

8.
Cellulose acetate fibers with supported highly dispersed aluminum phosphate were prepared by reacting aluminum-containing cellulose acetate (Al2O3=3.5 wt.%; 1.1 mmol g−1 aluminum atom per gram of the material) with phosphoric acid. Solid-state NMR spectra (CPMAS 31P NMR) data indicated that HPO42− is the species present on the fiber surface. The specific concentration of acidic centers, determined by ammonia gas adsorption, is 0.50 mmol g−1. The ion exchange capacities for Li+, Na+ and K+ ions were determined from ion exchange isotherms at 298 K and showed the following values (in mmol g−1): Li+=0.03, Na+=0.44 and K+=0.50. The H+/Li+ exchange corresponds to the model of the ideal ion exchange with a small value of the corresponding equilibrium constant K=1.1×10−2. Due to the strong cooperative effect, the H+/Na+ and H+/K+ ion exchange is non-ideal. These ion exchange equilibria were treated with the use of models of fixed bi- or tridentate centers, which consider the surface of the sorbent as an assemblage of polyfunctional sorption centers. Both the observed ion exchange capacities with respect to the alkaline metal ions and the equilibrium constants were discussed by taking into consideration the sequence of the ionic hydration radii for Li+, Na+ and K+. The matrix affinity order for the ions decreases as the hydration radii of the cations increase, i.e. Li+>Na+>K+. The high values of the separation factors SNa+/Li+ and SK+/Li+ (up to several hundred) provide quantitative separation of Na+ and K+ from Li+ from a mixture containing these three ions.  相似文献   

9.
Precipitation of Al3+ at pH = 10 in excess Li2CO3 leads to an anion exchanging compound, [Al2Li(OH)6]+2CO2−3. This compound exhibits, compared to [Mg3Al(OH)8]+2CO2−3, a higher degree of size selectivity in anion exchange. The structure of the [Al2Li(OH)6]+ layers is gibbsite-like, with a (110) diffraction feature at d = 4.35 Å indicating a pronounced Al3+ ordering. As claimed originally by Serna et al., the structure is [Al2Li(OH)6]+Az1/z rather than [Al2(OH)6]Li+Az1/z, with the Li+ coordinated in the octahedral positions left vacant by Al3+. This emerges from the details of a lithium-leaching process, which proposedly leads to a novel compound, [Al2H(OH)6]+Az1/z.  相似文献   

10.
Mössbauer spectra of hexakis (trimethylacetato) ferrate(III) complexes with general formula M3[Fe{OCOC(CH3)3}6] (where M=H+, Li+, Na+, K+ and NH 4 + ) exhibit a quadrupole doublet with EQ=0.31–0.65 mms–1 and =0.60–0.74 mms–1 (with respect to S.N.P. as standard). Infrared studies suggest unidentate coordination of the carboxylate ligands. Anomalously high and EQ values for H3[Fe{OCOC(CH3)3}6] have been explained in terms of possible hydrogen bonding. Thermal decomposition studies show fast and single stage decomposition yielding a constant weight at 320°C. Mössbauer spectra of intermediates after heating complexes at different temperatures indicate increasing EQ values. At 350°C, all complexes exhibit six-line spectra, suggesting the formation of alkali metal ferrate (Na2O·NaFeO2) or Fe2O3.  相似文献   

11.
The Preyssler polyoxoanion, [NaP5W30O110]14? ({P5W30}), is used as a platform for evaluating the role of nonbridging cations in the formation of transition‐metal‐bridged polyoxometalate (POM) coordination frameworks. Specifically, the assembly architecture of Co2+‐bridged frameworks is shown to be dependent on the identity and amount of alkali or alkaline‐earth cations present during crystallization. The inclusion of Li+, Na+, K+, Mg2+, or Ca2+ in the framework synthesis is used to selectively synthesize five different Co2+‐bridged {P5W30} structures. The influence of the competition between K+ and Co2+ for binding to {P5W30} in dictating framework assembly is evaluated. The role of ion pairing on framework assembly structure and available void volume is discussed. Overall, these results provide insight into factors governing the ability to achieve controlled assembly of POM‐based coordination networks.  相似文献   

12.
Lithium-excess binary clusters LinFn−1 (n=2–9) were detected by photoionization time-of-flight mass spectrometry in a supersonic cluster beam generated by a laser ablation of a solid mixture of lithium fluoride and nitride. Laser power dependence of the Li2F+ signal intensity has indicated that the ionization energy of the hyperlithiated Li2F molecule is lower than 4.66 eV. The theoretical vertical ionization energy obtained by the CCSD(T)/6-311+G(d)//B3LYP/6-311+G(d) calculations are 4.47 eV. No nitrogen-containing clusters were detected. The absence of Li4N is ascribed to the exothermicity of the reaction, 2Li3N→N2+Li6.  相似文献   

13.
Solvothermal reaction assisted with microwave leads to the formation of two unique heterometallic cubic clusters [Ni3M′(L)3(OH)(CH3CN)3]2·CH3CN (M′=K for 1 and M′=Na for 2, where L is an anion of 2-[(2-hydroxy-3-methoxy-benzylidene)-amino]-ethanesulfonate) with higher efficiency, yields and purity than those without it. The 6-metallacrown-3 [Ni3(OH)(L)3] groups exhibit interesting ion trapping and self-assembly of size-different Na+ and K+ through form recognition and coordination activity in 1 and 2. The magnetic studies for 1 and 2 suggest that the {Ni3M′O4} (M′=K and Na) cores both display dominant ferromagnetic interactions from the nature of the binding modes of μ3-O (oxidophenyl) and μ3-OH.  相似文献   

14.
The ionic conductivity of solid solution Cd0.77Sr0.23F2 is 1.6 × 10−4 S/cm at 500 K. The conduction mechanism changes from a vacancy mechanism to an interstitial one at 523–553 K. In solid solutions Cd0.9R0.1F2.1 (R = La-Lu, Y), the activation enthalpy of conduction decreases from 0.9 to 0.8 eV with decreasing ionic radius of R3+, raising the 500-K conductivity from 6 ×10−6 S/cm for La3+to 6 × 10−5 S/cm for Lu3+. For crystalline Cd0.95In0.05F2.05, ionic and electronic conductivities at 313 K equal 5 × 10−4 and 5 − 10−6 S/cm.__________Translated from Elektrokhimiya, Vol. 41, No. 5, 2005, pp. 627–632.Original Russian Text Copyright © 2005 by Sorokin, Buchinskaya, Sul’yanova, Sobolev.  相似文献   

15.
In the present work the uranyl hexacyanoferrate (K2UO2[Fe(CN)6]) is deposited on the palladized aluminum (Pd-Al) electrode from a \textUO22 + + \textFe( \textCN )6 - 3 {\text{UO}}_{2}^{2 + } + {\text{Fe}}\left( {\text{CN}} \right)_{6}^{ - 3} solution. Then the anodic stripping chronopotentiometry (ASCP) was used to strip the K2UO2[Fe(CN)6] from the Pd-Al surface. The operational conditions including: pH, K3Fe(CN)6 concentration, deposition potential, deposition time and stripping current were optimized. The ASCP calibration graph was linear in concentration range 10–460 μM. of \textUO22 + {\text{UO}}_{2}^{2 + } and the detection limit was 8.5 μM. The interference of some concomitant ions during the deposition process of K2UO2[Fe(CN)6] was studied. The proposed method was successfully applied for analysis of some uranium mineral ores.  相似文献   

16.
Reaction of [Ru6C(CO)16]2− with an excess of AgX (X = Cl, Br or I) affords heteronuclear clusters of formula [{Ru6C(CO)16Ag2X}2]2− in 80% yield, which for X = I and X = Br/Cl were crystallographically characterised. The formation of the cluster was followed in solution using electrospray ionisation mass spectrometry (ESI-MS), which revealed the presence of a wide range of clusters with the general formula [{Ru6C(CO)16} x Ag y X z ](2x−y+z)− where x = 1 or 2, y = 1, 2, 3 or 4 and z = 0, 1 or 2. The high yield of the product despite the evident complicated solution speciation is attributed to selective crystallisation of the observed compound driving the equilibrium toward this product.  相似文献   

17.
The heteropolytungstate (NH4)20[Na2(H2O)2Ni(H2O)5{Ni(H2O)}2As4W40O140] · 61H2O is obtained by the reaction of Na27[NaAs4W40O140] · 60H2O with NiCl2 · 6H2O and NH4Cl in pH≈4.0. The structure and chemical composition are determined by X-ray diffraction analysis and element analysis. The crystal data and main structure refinement are: a = 1.33135(18) nm, b = 1.9722(3) nm, c = 3.6430(5) nm, α = 78.010(2)°, β = 82.145(2)δ, γ = 74.385(2)°, V = 8.978(2) nm3, triclinic crystal system, space group: P1, Z = 2, R1 = 0.0512, and wR2 = 0.0684(I >2σ). The four S2 sites of the big cyclic ligand [As4W40O140]28- are occupied by two Na+ and two Ni2+ respectively, and each site supplies four Od coordinating to metal ion. The coordination number of Ni2+ is six, and that of two Na+ is five and six respectively. The third Ni2+ locates outside the cyclic [As4W40O140]28- and connects with one Od, and its coordination number is six.  相似文献   

18.
The gas-phase fragmentations of a series of Keggin polyoxometalate anions with molecular formula of TBAn[XM12O40] (X = P, Si; M = Mo, W) were studied by electrospray ionization tandem mass spectrometry. The bare polyoxoanions [XM12O40]n- as well as the non-covalent complexes {TBA[XM12O40]}(n-1)- and {TBAm[XM12O40]2}3- displayed characteristic dissociation pathways. Fragmentation of [XM12O40]n- led to pairs of complementary product anions whose total stoichiometry and charge matched those of the precursor anion, consistent with the previous study by Ma et al. The nature of the non-covalent interaction between [XM12O40]n- and TBA+ was addressed in detail via the example of {TBA[XM12O40]}(n-1)-. The non-covalent interaction [1] primarily dominated by the Coulombic attraction of the opposite charges completely changed the dissociation chemistry of [XM12O40]n-. The non-covalent complexes {TBA[XM12O40]}(n-1)- and {TBAm[XM12O40]2}3-, formed by the charge reduction during the electrospray process, underwent distinct dissociation routes: {TBA[XM12O40]}(n-1)- fragmented to give rise to its product ion {(C4H9)[XM12O40]}(n-1)- by cleaving the N−C covalent bond inside the TBA+ cation whereas {TBAm[XM12O40]2}3- dissociated into a pair of product ions, {TBAi[XM12O40]}2- and {TBAm-i[XM12O40]}-, by breaking the non-covalent bond between [XM12O40]n- and TBA+. In addition, energy-variable CID was used to map the relative stabilities of the ion clusters in the gas phase, which was in excellent agreement with the relative orders of thermal stability in the condensed phase.  相似文献   

19.
The solid solution Li8−2xCaxCeO6 (0 < x ≤ 0,5) and the definite phase Li6CaCeO6 have been obtained at 800°C through a study of Li---Ca---Ce---O system. Electrical measurements on the doped phases Litetr.6 [Li2-2xCaxCe□]oct.O6 show that the conductivity varies slightly with the creation of vacancies in the octahedral layers. This result unambiguously confirms the following diffusion mechanism: the conduction is assumed essentially by lithium ions located in the tetrahedral layers. The compound Li6CaCeO6 is isostructural with Li6In2O6. The cell is trigonal, Å, c = 10,603 Å, c/a = 1,0587, and Z = 6. This new quaternary phase, which belongs to the same structural family of oxides of the type Li8MO6, either pure or doped with calcium, may be represented by the formula Litetr.6[Ca Ce□]oct.O6. Electrical and structural data are correlated for this compound.  相似文献   

20.
The structure of nearly saturated or supersaturated aqueous solutions of NaCI [6.18 mol (kg H2O)–1], KCI [4.56 mol (kg H2O)–1], KF [16.15 mol (kg H2O)–1] and CsF [31.96 mol (kg H2O)–1] has been investigated by means of solution X-ray diffraction at 25°C. In the NaCI and KCI solutions about 30% and 60%, respectively, of the ions form ion pairs and the Na+–Cl and K+–Cl distances have been determined to be 282 and 315 pm, respectively. The average hydration numbers of Na+ and Cl ions are 4.6 and 5.3, respectively, in the NaCI solution and those of K+ and Cl ions in the KCI solution are both 5.8. In the KF solution, clusters containing some cations and anions, besides 1:1 (K+–F) ion pairs, are formed. The K+–F interatomic distance has been determined to be 269 pm, and nonbonding K+...K+ and F...F distances in the clusters are 388 and 432 pm, respectively, and the average coordination numbers n KF , n KK and n FF have been estimated to be 2.3, 1.9, and 1.6, respectively. In the highly supersaturated CsF solution an appreciable amount of clusters containing several caesium and fluoride ions are formed. The Cs+–F distance in the cluster has been determined to be 312 pm, while the nonbonding Cs+...Cs+ and F...F distances are estimated to be 442 and 548 pm, respectively, the distances being about and times the Cs+–F distance, respectively. The coordination numbers n CsF , n CsCs , and n FF in the first coordination sphere of each ion are 3.3, 2.3 and 5.3, respectively, and the result shows the formation of clusters of higher order than 1:1 and 2:2 ion pairs. These ion pairs and clusters may be regarded as embryos for the formation of nuclei of crystals and the results obtained in the present diffraction study support observations for the nucleation of the alkali halide crystals studied by molecular dynamics simulations previously examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号