首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
锂离子电池正极材料LiMnPO4的合成与性能   总被引:4,自引:0,他引:4  
对反应物与中间产物进行球磨,采用固相反应法分别在600 ℃和800 ℃合成了掺碳的橄榄石型LiMnPO4.通过XRD表征样品的晶体结构,采用SEM观察样品的微观形貌,利用电化学手段测试样品的充放电性能.结果表明,在对反应物球磨24 h、中间产物球磨12 h的条件下,在600 ℃烧结的样品含有杂相和烧结密实的大块状物.而在800 ℃下烧结可形成纯橄榄石结构的LiMnPO4,但颗粒较大.上述两种样品的电化学测试表明,它们难以充放电.而在反应物球磨36 h、中间产物球磨24 h的条件下,600 ℃烧结得到物相较纯,样品的粒径小且均匀,约100~200 nm,首次放电容量接近100 mAh•g-1.本研究表明,反应物或中间产物的混合程度以及烧结温度的选择是获得具有可逆充放电性能的纯橄榄石结构LiMnPO4的重要因素.  相似文献   

2.
述了近年来有关LiMPO4(M=Fe、Mn、Co、V)系列材料的合成与性能研究的进展,重点讨论了LiFePO4材料改性的最新研究成果,分析了该类材料今后可能的发展趋势。  相似文献   

3.
魏怡  王利娟  闫继  沙鸥  唐致远  马莉 《物理化学学报》2011,27(11):2587-2592
采用液相法合成了Li2MnSiO4/C复合正极材料,并研究了不同焙烧温度对材料的结构、形貌和电化学性能的影响.利用热重(TG)分析了材料前驱体的热行为,确定了合成Li2MnSiO4/C复合正极材料的焙烧温度范围为600-800℃.X射线衍射(XRD)测试结果表明,不同温度下合成的样品材料均具有正交结构,且空间群为Pmn21,同时利用扫描电子显微镜(SEM)对所得样品材料的微观形貌及颗粒大小进行了表征.将所得Li2MnSiO4/C复合正极材料组装成扣式电池,并在不同的电流密度下进行充放电测试,结果表明:700℃合成的样品材料电化学性能最佳,具有较高的库仑效率及很好的循环稳定性.  相似文献   

4.
采用水热辅助溶胶-凝胶工艺,通过原位复合的方法合成了锂离子电池用Li2MnSiO4/CNTs复合正极材料.分析了复合正极材料的形貌和组成特征,并对每摩尔分别复合5,10,20和30 g碳纳米管(CNTs)及未复合CNTs的样品进行了电化学性能测试.结果显示,所合成的Li2MnSiO4颗粒尺寸分布均匀,粒径在100 nm左右,易团聚.但随着CNTs复合量的增加,团聚现象逐渐改善.合成的Li2MnSiO4材料结晶度良好,属于正交晶系Pmn21空间群.电化学测试结果表明,每摩尔复合20 g CNTs的样品电化学性能最佳,在10 mA/g电流密度下,首周放电容量为150 mA.h/g,循环20周后仍保持在80 mA.h/g;CNTs的原位复合可提高Li2MnSiO4材料的导电性能,并改善其电化学性能.  相似文献   

5.
采用液相法合成了Li2MnSiO4/C复合正极材料,并研究了不同焙烧温度对材料的结构、形貌和电化学性能的影响.利用热重(TG)分析了材料前驱体的热行为,确定了合成Li2MnSiO4/C复合正极材料的焙烧温度范围为600-800℃.X射线衍射(XRD)测试结果表明,不同温度下合成的样品材料均具有正交结构,且空间群为Pmn21,同时利用扫描电子显微镜(SEM)对所得样品材料的微观形貌及颗粒大小进行了表征.将所得Li2MnSiO4/C复合正极材料组装成扣式电池,并在不同的电流密度下进行充放电测试,结果表明:700℃合成的样品材料电化学性能最佳,具有较高的库仑效率及很好的循环稳定性.  相似文献   

6.
模板法合成有孔的锂离子电池正极材料LiFePO_4/C   总被引:2,自引:2,他引:0  
<正>橄榄石型LiFePO4因其具有170mAh·g-1的理论容量,3.4V的放电平台,良好的循环性能和热稳定性能,无毒和价格低廉等优点,自1997年被Goodenough等[1]首次报道以来受到人们广泛关注[2-3],并被认为在动力电池应用上极有潜力[4]。但此材料的电导率低及扩散性能差[1],限制其大规模应用。针对上述缺点研究人员对LiFePO4的改性研究主要包括:包覆碳[5-7]和金属粉末[8]、掺杂金属离  相似文献   

7.
采用固相法合成了纯六方相的TiS2粉体. X射线衍射(XRD)、扫描电子显微镜(SEM)结果表明该材料具有特征层状结构, 其颗粒大小在10-20 μm之间. 作为锂离子电池负极材料, TiS2在3.00 V(vs. Li+/Li)以下有3个明显的放电平台, 首次可逆容量达668 mAh·g-1, 在第一个放电电压范围(3.00-1.40 V)内具有优异的循环可逆性. 深度放电时由于Li2S的生成和材料颗粒严重破碎, 在低于0.50 V时材料的循环性能不佳. 通过减小材料颗粒度和提高导电剂含量, TiS2的电化学性能得到显著改善.  相似文献   

8.
通过冻干干燥法辅助制备了分布均匀的纳米Li2FeSiO4材料.通过X射线衍射(XRD)、拉曼光谱(Raman)、扫描电子显微镜(SEM)、N2吸附-脱附、循环伏安(CV)和充放电测试等手段对材料的结构及电化学性能进行了表征.结果表明,冻干法处理后得到的Li2FeSiO4材料颗粒尺寸更小,能够缩短锂离子的扩散距离;同时较大的比表面积可以使材料与电解液接触更加充分.在1.5~4.8 V电压范围内,与采用传统烘干干燥法制备的材料相比,采用冻干法制备的材料表现出更高的可逆比容量,并具有良好的倍率性能和循环稳定性.  相似文献   

9.
采用溶胶-凝胶法制备了氮掺杂的硅酸亚铁锂正极材料.通过X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、充放电测试和交流阻抗测试(EIS)等对材料的结构及电化学性能进行了表征.结果表明,N元素已掺杂到Li2FeSiO4材料晶格中,样品具有较小的颗粒尺寸和优异的动力学性能,表现出较好的充放电比容量和倍率特性,首次放电比容量为130 mA·h/g,循环50次后比容量仍可达到124 mA·h/g,容量保持率高达95%.  相似文献   

10.
以间苯二酚甲醛树脂作碳源,由固相法合成LiMnPO4/C复合材料.研究不同合成温度和时间对产物形貌、结构以及电化学性能的影响.结果表明,600℃热处理3 h制得的LiMnPO4/C粒径细小且分布均匀,一次颗粒粒径100~300 nm.0.02C下首次放电容量达到121.6 mAh.g-1,充放电循环20次仍可维持在11...  相似文献   

11.
Well-crystallized olivine LiNiPO4 and carbon-modified LiNiPO4(LiNiPO4/C) were synthesized by a combined solvothermal and solid state reaction method using water-benzyl alcohol two-phase solvent. The structure and morphology of the prepared LiNiPO4 were systematically characterized by powder X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The LiNiPO4 particles are up to around 2 μm in diameter while the particle size of LiNiPO4/C is about 100—200 nm. At a current rate of 0.05 C(1.00 C=167 mA/g, corresponding to one Li+ intercalation/deintercalation), LiNiPO4 and LiNiPO4/C presented a high initial specific capacity of 157 and 220 mA·h/g, respectively. The capacity of LiNiPO4/C is 72% larger than that of LiNiPO4 at 0.1 C. The LiNiPO4/C cathode exhibits a superior electrochemical performance in comparison with LiNiPO4, revealing that carbon modifying is an effective method to improve the ionic diffusion and electronic conductivity of cathode material LiNiPO4. Furthermore, lithium ion diffusion coefficients of LiNiPO4 and LiNiPO4/C are 1.80×10-15 and 1.91×10-14 cm2/s, respectively, calculated via the data from electrochemical impedance spectra.  相似文献   

12.
LiMn2O4 nano-wires with ideal size distribution were readily synthesized by flux method. Samples prepared conventionally were used as the comparison references to investigate the effect of flux. The structural, morphological and electrochemical properties of nano-sized materials were examined by powder X-ray diffraction(XRD) analysis, scanning electron microscopy(SEM) and charge-discharge cycling analysis. Results from galvanostatic charge-discharge analysis show that the samples prepared at 700℃ via flux method(FM-700) afford the highest initial discharge capacity of 125.5 mA·h/g between 3.0 to 4.3 V at a rate of 0.2 C. After 50 cycles, a cycling retention of 89.6% is evident. Overall, the LiMn2O4 nano-wires developed in this work seem to be promising cathode materials for lithium ion batteries suitable to different energy-saving settings.  相似文献   

13.
锂离子电池正极材料LiMPO4的研究进展   总被引:20,自引:0,他引:20  
摘要综述了近年来有关LiMPO4(M=Fe、Mn、Co、V)系列材料的合成与性能研究的进展,重点讨论了LiFePO4材料改性的最新研究成果,分析了该类材料今后可能的发展趋势。  相似文献   

14.
采用新型流变相法制备锂离子电池正极材料纳米-LiVOPO4.采用X射线衍射、扫描电子显微镜以及电化学测试等手段对LiVOPO4的微观结构、表面形貌和电化学性能进行了表征.结果表明,采用流变相法制备的LiVOPO4由粒径大约在10-60nm的小颗粒组成.首次放电容量,首次充电容量以及库仑效率分别为135.7mAh·g-1,145.8mAh·g-1和93.0%.0.1C(1C=160mA·g-1)放电时,60次循环后,放电容量保持在134.2mAh·g-1,为首次放电容量的98.9%,平均每次循环的容量损失仅为0.018%.而1.0C和2.0C放电时的放电容量达到0.1C放电容量的96.5%和91.6%.随着放电次数的增加,电荷转移阻抗增加,而锂离子在电极中的扩散系数达到10-11cm2·s-1数量级.实验结果显示采用流变相法制备的LiVOPO4是一种容量高、循环性能好、倍率性能好的锂离子电池正极材料.  相似文献   

15.
A series of LiMn2O4/LiFePO4 blend cathodes was prepared by hand milling and ball milling in order to compensate the disadvantage of spinel LiMn2O4 and olivine LiFePO4. The morphologies of the blends were studied by scanning electron microscopy, and their electrochemical properties were studied by charge-discharge cycling, cyclic voltammetry and electrochemical impedance spectroscopy. It is easy to obtain uniform LiMn2O4/LiFePO4 blends by the hand milling technique, while significant particle agglomeration is caused by the ball milling technique. When the LiMn2O4:LiFePO4 mass ratio is 1:1, the nano-sized LiFePO4 powders not only uniformly cover the micron-sized LiMn2O4 particles but also effectively fill in the cavities of the LiMn2O4 space. Such morphology offers a good electrical contact and a high tap density, which leads to a high discharge capacity and good cycle stability.  相似文献   

16.
以LiH2PO4和廉价的Fe2O3为原料,葡萄糖为有机碳源,通过选择高价V5+进行铁位掺杂固相合成碳包覆复合改性的LiFe1-xVxPO4/C(x=0,0.01,0.03,0.05,0.07,0.1)材料。700℃下处理得到结晶性好、电化学性能良好、较高振实密度ρ=1.2 g·cm-3的材料。X射线光电子能谱(XPS)测试结果表明掺入的钒为高价态V5+,能产生更多的过剩电子,从而提高了电子电导率,且V5+的掺入没有改变Fe的价态。交流阻抗测试结果进一步证明了V5+的掺入降低了电荷迁移阻抗,提高了材料的电子电导率。其中优化的材料LiFe0.95V0.05PO4显示了不同倍率下良好的充放电比容量,在0.1C、1C、2C和5C倍率的放电比容量分别为155、146.5、135.3和125.9 mAh·g-1,5C循环500次后容量为119.5 mAh·g-1,容量保持率为94.9%,材料循环性能较好,具有良好的实际应用价值。  相似文献   

17.
锂离子电池正极材料LiFePO4的结构和电化学反应机理   总被引:1,自引:0,他引:1  
十年来的研究并没有对LiFePO4的电化学反应机理形成准确一致的认识.复合阴离子(PO4)3-的应用使铁基化合物成为一种非常理想的锂离子电池正极备选材料.然而,LiFePO4的晶体结构却限制了其电导性与锂离子扩散性能,从而使材料的电化学性能下降.本文主要考虑充放电机理、相态转变、离子掺杂、锂离子扩散、电导、电解液、充放电动力学等因素的影响,从理论与实验角度综述了关于LiFePO4的电化学反应机理的研究进展.  相似文献   

18.
锂离子电池纳米正极材料   总被引:4,自引:0,他引:4  
综述了锂离子电池纳米正极材料的研究进展,阐述了这种材料用于锂离子电池的优势和存在的问题,把纳米正极材料分为过渡金属嵌锂化合物、金属氧化物和金属硫化物和其它纳米正极材料。归纳了不同纳米正极材料的主要制备方法,探讨了材料的制备方法与其结构、形貌和电化学性能之间的关系,展望了纳米正极材料用于锂离子电池的未来前景。  相似文献   

19.
采用新型流变相法制备锂离子电池正极材料纳米-LiVOPO4. 采用X射线衍射、扫描电子显微镜以及电化学测试等手段对LiVOPO4的微观结构、表面形貌和电化学性能进行了表征. 结果表明, 采用流变相法制备的LiVOPO4由粒径大约在10-60 nm的小颗粒组成. 首次放电容量, 首次充电容量以及库仑效率分别为135.7 mAh·g-1, 145.8 mAh·g-1和93.0%. 0.1C (1C=160 mA·g-1)放电时, 60次循环后, 放电容量保持在134.2 mAh·g-1, 为首次放电容量的98.9%, 平均每次循环的容量损失仅为0.018%. 而1.0C和2.0C放电时的放电容量达到0.1C放电容量的96.5%和91.6%. 随着放电次数的增加, 电荷转移阻抗增加, 而锂离子在电极中的扩散系数达到10-11 cm2·s-1数量级. 实验结果显示采用流变相法制备的LiVOPO4是一种容量高、循环性能好、倍率性能好的锂离子电池正极材料.  相似文献   

20.
以LiH2PO4和廉价的Fe2O3为原料,葡萄糖为有机碳源,通过选择高价V5+进行铁位掺杂固相合成碳包覆复合改性的LiFe1-xVxPO4/C(x=0,0.01,0.03,0.05,0.07,0.1)材料。700℃下处理得到结晶性好、电化学性能良好、较高振实密度ρ=1.2g·cm-3的材料。X射线光电子能谱(XPS)测试结果表明掺入的钒为高价态V5+,能产生更多的过剩电子,从而提高了电子电导率,且V5+的掺入没有改变Fe的价态。交流阻抗测试结果进一步证明了V5+的掺入降低了电荷迁移阻抗,提高了材料的电子电导率。其中优化的材料LiFe0.95V0.05PO4显示了不同倍率下良好的充放电比容量,在0.1C、1C、2C和5C倍率的放电比容量分别为155、146.5、135.3和125.9mAh·g-1,5C循环500次后容量为119.5mAh·g-1,容量保持率为94.9%,材料循环性能较好,具有良好的实际应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号