首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We consider a generalization of the classic uncapacitated facility location problem (UFLP) in which customers require multiple products. We call this the multiproduct uncapacitated facility location problem (MUFLP). In MUFLP, in addition to a fixed cost for opening a facility, a fixed cost is incurred for each product that a facility is equipped to handle. Also, an assignment cost is incurred for satisfying a customer's requirement for a particular product at a chosen facility. We describe a branch-and-bound algorithm for MUFLP. Lower bounds are obtained by solving a UFLP subproblem for each product using a dual ascent routine. We also describe a heuristic branch-and-bound procedure in which the solutions to the subproblems at a given node might not generate a true lower bound. To generate a feasible solution, a ‘superposition’ heuristic based on solving UFLP subproblems for each product, as well as a ‘drop’ heuristic that eliminates facilities and equipment from the solution in a step-by-step manner, are given. Computational results are reported.  相似文献   

2.
We propose a Lagrangian heuristic for facility location problems with concave cost functions and apply it to solve the plant location and technology acquisition problem. The problem is decomposed into a mixed integer subproblem and a set of trivial single-variable concave minimization subproblems. We are able to give a closed-form expression for the optimal Lagrangian multipliers such that the Lagrangian bound is obtained in a single iteration. Since the solution of the first subproblem is feasible to the original problem, a feasible solution and an upper bound are readily available. The Lagrangian heuristic can be embedded in a branch-and-bound scheme to close the optimality gap. Computational results show that the approach is capable of reaching high quality solutions efficiently. The proposed approach can be tailored to solve many concave-cost facility location problems.  相似文献   

3.
This paper addresses the problem of scheduling ambulance crews in order to maximize the coverage throughout a planning horizon. The problem includes the subproblem of locating ambulances to maximize expected coverage with probabilistic response times, for which a tabu search algorithm is developed. The proposed tabu search algorithm is empirically shown to outperform previous approaches for this subproblem. Two integer programming models that use the output of the tabu search algorithm are constructed for the main problem. Computational experiments with real data are conducted. A comparison of the results of the models is presented.  相似文献   

4.
Facility location models are applicable to problems in many diverse areas, such as distribution systems and communication networks. In capacitated facility location problems, a number of facilities with given capacities must be chosen from among a set of possible facility locations and then customers assigned to them. We describe a Lagrangian relaxation heuristic algorithm for capacitated problems in which each customer is served by a single facility. By relaxing the capacity constraints, the uncapacitated facility location problem is obtained as a subproblem and solved by the well-known dual ascent algorithm. The Lagrangian relaxations are complemented by an add heuristic, which is used to obtain an initial feasible solution. Further, a final adjustment heuristic is used to attempt to improve the best solution generated by the relaxations. Computational results are reported on examples generated from the Kuehn and Hamburger test problems.  相似文献   

5.
This paper introduces a new type of constraints, related to schedule synchronization, in the problem formulation of aircraft fleet assignment and routing problems and it proposes an optimal solution approach. This approach is based on Dantzig–Wolfe decomposition/column generation. The resulting master problem consists of flight covering constraints, as in usual applications, and of schedule synchronization constraints. The corresponding subproblem is a shortest path problem with time windows and linear costs on the time variables and it is solved by an optimal dynamic programming algorithm. This column generation procedure is embedded into a branch and bound scheme to obtain integer solutions. A dedicated branching scheme was devised in this paper where the branching decisions are imposed on the time variables. Computational experiments were conducted using weekly fleet routing and scheduling problem data coming from an European airline. The test problems are solved to optimality. A detailed result analysis highlights the advantages of this approach: an extremely short subproblem solution time and, after several improvements, a very efficient master problem solution time.  相似文献   

6.
This article introduces a new exact algorithm for the capacitated vehicle routing problem with stochastic demands (CVRPSD). The CVRPSD can be formulated as a set partitioning problem and it is shown that the associated column generation subproblem can be solved using a dynamic programming scheme. Computational experiments show promising results.  相似文献   

7.
Dinkelbach's algorithm was developed to solve convex fractinal programming. This method achieves the optimal solution of the optimisation problem by means of solving a sequence of non-linear convex programming subproblems defined by a parameter. In this paper it is shown that Dinkelbach's algorithm can be used to solve general fractional programming. The applicability of the algorithm will depend on the possibility of solving the subproblems. Dinkelbach's extended algorithm is a framework to describe several algorithms which have been proposed to solve linear fractional programming, integer linear fractional programming, convex fractional programming and to generate new algorithms. The applicability of new cases as nondifferentiable fractional programming and quadratic fractional programming has been studied. We have proposed two modifications to improve the speed-up of Dinkelbachs algorithm. One is to use interpolation formulae to update the parameter which defined the subproblem and another truncates the solution of the suproblem. We give sufficient conditions for the convergence of these modifications. Computational experiments in linear fractional programming, integer linear fractional programming and non-linear fractional programming to evaluate the efficiency of these methods have been carried out.  相似文献   

8.
We consider a two-dimensional cutting stock problem where stock of different sizes is available, and a set of rectangular items has to be obtained through two-staged guillotine cuts. We propose a heuristic algorithm, based on column generation, which requires as its subproblem the solution of a two-dimensional knapsack problem with two-staged guillotines cuts. A further contribution of the paper consists in the definition of a mixed integer linear programming model for the solution of this knapsack problem, as well as a heuristic procedure based on dynamic programming. Computational experiments show the effectiveness of the proposed approach, which obtains very small optimality gaps and outperforms the heuristic algorithm proposed by Cintra et al. [3].  相似文献   

9.
《Optimization》2012,61(5-6):495-516
For optimization problems that are structured both with respect to the constraints and with respect to the variables, it is possible to use primal–dual solution approaches, based on decomposition principles. One can construct a primal subproblem, by fixing some variables, and a dual subproblem, by relaxing some constraints and king their Lagrange multipliers, so that both these problems are much easier to solve than the original problem. We study methods based on these subproblems, that do not include the difficult Benders or Dantzig-Wolfe master problems, namely primal–dual subgradient optimization methods, mean value cross decomposition, and several comtbinations of the different techniques. In this paper, these solution approaches are applied to the well-known uncapacitated facility location problem. Computational tests show that some combination methods yield near-optimal solutions quicker than the classical dual ascent method of Erlenkotter  相似文献   

10.
This paper presents an optimization model with performance constraints for two kinds of graph elements layout problem. The layout problem is partitioned into finite subproblems by using graph theory and group theory, such that each subproblem overcomes its on-off nature about optimal variable. Furthermore each subproblem is relaxed and the continuity about optimal variable doesn’t change. We construct a min-max problem which is locally equivalent to the relaxed subproblem and develop the first order necessary and sufficient conditions for the relaxed subproblem by virtue of the min-max problem and the theories of convex analysis and nonsmooth optimization. The global optimal solution can be obtained through the first order optimality conditions.  相似文献   

11.
Branch-and-Price Algorithms for the One-Dimensional Cutting Stock Problem   总被引:6,自引:0,他引:6  
We compare two branch-and-price approaches for the cutting stock problem. Each algorithm is based on a different integer programming formulation of the column generation master problem. One formulation results in a master problem with 0–1 integer variables while the other has general integer variables. Both algorithms employ column generation for solving LP relaxations at each node of a branch-and-bound tree to obtain optimal integer solutions. These different formulations yield the same column generation subproblem, but require different branch-and-bound approaches. Computational results for both real and randomly generated test problems are presented.  相似文献   

12.
We propose a new approach to crew-pairing problems arising in the context of airline companies. The problem is first formulated as a large scale set covering problem with many colums, each column representing a valid crew-pairing. We then suggest a solution procedure for the continuous relaxation of this large scale problem, based on generalized linear programming, in which the column generation subproblem is shown to be equivalent to a shortest path problem in an associated graph. Computational results obtained on a series of real problems (involving up to 329 flight segments) are reported, confirming both computational efficiency and practical applicability of the new approach. Indeed not only were the resulting solutions observed to be integral for most test problems, but average savings of about 4 to 5% over the best available hand-built solutions were shown to be obtained.  相似文献   

13.
Scaled Optimal Path Trust-Region Algorithm   总被引:3,自引:0,他引:3  
Trust-region algorithms solve a trust-region subproblem at each iteration. Among the methods solving the subproblem, the optimal path algorithm obtains the solution to the subproblem in full-dimensional space by using the eigenvalues and eigenvectors of the system. Although the idea is attractive, the existing optimal path method seems impractical because, in addition to factorization, it requires either the calculation of the full eigensystem of a matrix or repeated factorizations of matrices at each iteration. In this paper, we propose a scaled optimal path trust-region algorithm. The algorithm finds a solution of the subproblem in full-dimensional space by just one Bunch–Parlett factorization for symmetric matrices at each iteration and by using the resulting unit lower triangular factor to scale the variables in the problem. A scaled optimal path can then be formed easily. The algorithm has good convergence properties under commonly used conditions. Computational results for small-scale and large-scale optimization problems are presented which show that the algorithm is robust and effective.  相似文献   

14.
We study a vehicle routing problem with soft time windows and stochastic travel times. In this problem, we consider stochastic travel times to obtain routes which are both efficient and reliable. In our problem setting, soft time windows allow early and late servicing at customers by incurring some penalty costs. The objective is to minimize the sum of transportation costs and service costs. Transportation costs result from three elements which are the total distance traveled, the number of vehicles used and the total expected overtime of the drivers. Service costs are incurred for early and late arrivals; these correspond to time-window violations at the customers. We apply a column generation procedure to solve this problem. The master problem can be modeled as a classical set partitioning problem. The pricing subproblem, for each vehicle, corresponds to an elementary shortest path problem with resource constraints. To generate an integer solution, we embed our column generation procedure within a branch-and-price method. Computational results obtained by experimenting with well-known problem instances are reported.  相似文献   

15.
Computational Optimization and Applications - We propose a first-order method to solve the cubic regularization subproblem (CRS) based on a novel reformulation. The reformulation is a constrained...  相似文献   

16.
We consider a single-machine scheduling problem which arises as a subproblem in a job-shop environment where the jobs have to be transported between the machines by a single transport robot. The robot scheduling problem may be regarded as a generalization of the traveling salesman problem with time windows, where additionally generalized precedence constraints (minimal time-lags) have to be respected. The objective is to determine a sequence of all nodes and corresponding starting times in the given time windows in such a way that all generalized precedence relations are respected and the sum of all traveling and waiting times is minimized.We calculate lower bounds for this problem using constraint propagation techniques and a linear programming formulation which is solved by a column generation procedure. Computational results are presented for test data arising from job-shop instances with a single transport robot and some modified traveling salesman instances.  相似文献   

17.
This paper investigates a distributionally robust scheduling problem on identical parallel machines, where job processing times are stochastic without any exact distributional form. Based on a distributional set specified by the support and estimated moments information, we present a min-max distributionally robust model, which minimizes the worst-case expected total flow time out of all probability distributions in this set. Our model doesn’t require exact probability distributions which are the basis for many stochastic programming models, and utilizes more information compared to the interval-based robust optimization models. Although this problem originates from the manufacturing environment, it can be applied to many other fields when the machines and jobs are endowed with different meanings. By optimizing the inner maximization subproblem, the min-max formulation is reduced to an integer second-order cone program. We propose an exact algorithm to solve this problem via exploring all the solutions that satisfy the necessary optimality conditions. Computational experiments demonstrate the high efficiency of this algorithm since problem instances with 100 jobs are optimized in a few seconds. In addition, simulation results convincingly show that the proposed distributionally robust model can hedge against the bias of estimated moments and enhance the robustness of production systems.  相似文献   

18.
A new decomposition method for multistage stochastic linear programming problems is proposed. A multistage stochastic problem is represented in a tree-like form and with each node of the decision tree a certain linear or quadratic subproblem is associated. The subproblems generate proposals for their successors and some backward information for their predecessors. The subproblems can be solved in parallel and exchange information in an asynchronous way through special buffers. After a finite time the method either finds an optimal solution to the problem or discovers its inconsistency. An analytical illustrative example shows that parallelization can speed up computation over every sequential method. Computational experiments indicate that for large problems we can obtain substantial gains in efficiency with moderate numbers of processors.This work was partly supported by the International Institute for Applied Systems Analysis, Laxenburg, Austria.  相似文献   

19.
Stochastic programming for nurse assignment   总被引:1,自引:0,他引:1  
We present a brief overview of four phases of nurse planning. For the last phase, which assigns nurses to patients, a stochastic integer programming model is developed. A Benders’ decomposition approach is proposed to solve this problem, and a greedy algorithm is employed to solve the recourse subproblem. To improve the efficiency of the algorithm, we introduce sets of valid inequalities to strengthen a relaxed master problem. Computational results are provided based upon data from Baylor Regional Medical Center in Grapevine, Texas. Finally, areas of future research are discussed.  相似文献   

20.
In this paper, we extend the multiple traveling repairman problem by considering a limitation on the total distance that a vehicle can travel; the resulting problem is called the multiple traveling repairmen problem with distance constraints (MTRPD). In the MTRPD, a fleet of identical vehicles is dispatched to serve a set of customers. Each vehicle that starts from and ends at the depot is not allowed to travel a distance longer than a predetermined limit and each customer must be visited exactly once. The objective is to minimize the total waiting time of all customers after the vehicles leave the depot. To optimally solve the MTRPD, we propose a new exact branch-and-price-and-cut algorithm, where the column generation pricing subproblem is a resource-constrained elementary shortest-path problem with cumulative costs. An ad hoc label-setting algorithm armed with bidirectional search strategy is developed to solve the pricing subproblem. Computational results show the effectiveness of the proposed method. The optimal solutions to 179 out of 180 test instances are reported in this paper. Our computational results serve as benchmarks for future researchers on the problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号