首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two new coordination polymers comprised of Mn(2+), N(CN)(2)(-) (dicyanamide, herein denoted dca) and pyrimidine (pym) have been synthesized and structurally and magnetically characterized. Mn(dca)(2)(pym)(2), , crystallizes in the orthorhombic space group Pbcn and forms trans bi-bridged Mn-(micro(1,5)-dca)(2)-Mn ribbons that extend along the b-axis of the unit cell. Two terminally bonded pym ligands are trans-coordinated to the Mn center. Adjacent chains interdigitate in an undulating fashion presumably due to a templating effect imposed by the pym ligands where N-atoms of consecutive pym rings stack parallel to the chain axis. Mn(dca)(2)(pym)(H(2)O), , which crystallizes in the monoclinic space group P2(1)/c, has a unique interdigitated 2D network that consists of double-bridged [Mn(2)(dca)(2)(pym)(2)(H(2)O)(2)](2+)"dimers" that are connected via single-bridging dca ligands. Each MnN(5)O octahedron is comprised of a coordinated H(2)O, a monodentate pym ligand, and four micro(1,5)-bridging dca anions. The magnetic data for were fitted to a uniform antiferromagnetic chain model which yielded J/k(B) = -0.34(1) K. In contrast, is best described as an alternating chain owing to the presence of both single- and double-bridging dca anions; a least-squares fit afforded J(a) = -0.43(1) and J(b) = -0.20(2) K, respectively. A transition to long-range magnetic ordering was observed for below approximately 2.4 K in addition to a field-induced spin flop transition at 15.6 kOe (1.7 K).  相似文献   

2.
Reaction of [UO(2)(NO(3))(2)] with the hydroxy ketones 3-hydroxy-2-methyl-4-pyrone (Hma) and 3-hydroxy-1,2-dimethyl-4(1H)-pyridone (Hdpp) in aqueous acidic solutions (pH approximately 3) yields the compounds [UO(2)(ma)(2)(H(2)O)].H(2)O (1.H(2)O) and [UO(2)(dpp)(Hdpp)(2)(H(2)O)]ClO(4) (2), respectively. X-ray diffraction shows that the geometry around the metal ion in both complexes is pentagonal bipyramid. Uranium ion in the crystal structure of 1 were found to be ligated with two chelate ma(-) groups and one unidentate H(2)O molecule (C coordination mode) at the equatorial plane, while in 2 with two single-bonded Hdpp there were one chelate dpp(-) and one H(2)O molecule (P coordination mode). Crystal data (Mo Kalpha; 293(2) K) are as follows: (1) monoclinic space group C2/c, a = 14.561(7) A, b = 14.871(9) A, c = 7.250(4) A, beta = 95.40(4) degrees , Z = 4; (2) monoclinic space group P2(1)/c, a = 19.080(2) A, b = 9.834(1) A, c = 15.156(2) A, beta = 104.62(1) degrees , Z = 4. (1)H NMR measurements indicate that complex 2 retains its structure in CD(3)CN solution; however, in DMSO-d(6) both complexes adopt the C structure. Line-shape analysis for the (1)H NMR peaks of 2 at various temperatures shows a fast intramolecular exchange process between the chelate dpp(-) and one of the single bonded Hdpp ligands and one slower exchange between all three ligands. The activation parameters and the decrease of the exchange rate by replacing unidentate ligand with DMSO indicate the dissociation of the unidentate ligand as the rate-determining step for the former exchange. Density functional calculations (DFT) support this mechanism and give a quantitative interpretation of the electronic structure of the two ligands and the geometries adopted by the complexes.  相似文献   

3.
Lu YB  Wang MS  Zhou WW  Xu G  Guo GC  Huang JS 《Inorganic chemistry》2008,47(19):8935-8942
Two novel manganese(II) tetrazolate coordination polymers, Mn 3(Hbta) 4(mu 2 -OH) 2(H 2O).2H 2O ( 1) and Mn(bta)(H 2O) ( 2), were obtained by the hydrothermal reaction of MnCl 2.4H 2O with N, N-bis[1(2) H-tetrazol-5-yl]amine (H 2bta) in different pH values. Compound 1 exhibits a 2-D (4,4) layer structure, which is built from binuclear Mn 2(mu 2-OH) 2 subunits and mu 3-bridging Hbta (-) linkers. Compound 2 is a helical framework, and its 3-D PtS-like net is constructed by Mn 2(bta) 2 dimers and mu 5-bridging bta (2-) linkers. Magnetic measurements reveal that compound 1 displays an antiferromagnetic ordering, while compound 2 exhibits the coexistence of a spin-canted antiferromagnetic coupling and a field-induced spin-flop transition.  相似文献   

4.
The polymeric lanthanide complexes (Ln(mu-CH3OC6H5C4O3)(CH3OC6H5C4O3)2 (H2O)4.xH2O)n [Ln=La (1), Eu (2), Gd (3)], formed from the reaction of aqueous solutions of anisolesquarate and Ln(NO3)3.xH2O, are all structurally similar with only subtle differences between the lanthanum complex and the isomorphous pair of europium and gadolinium analogues. The lanthanum atom in 1 has a square antiprismatic coordination geometry comprising two pendant and two mu-1,3-bridging anisolesquarate groups and four aqua ligands. Complexes 2 and 3 have two independent metal atoms in their asymmetric units compared to one for the lanthanum complex. However, the gross structures of 1-3 are essentially the same. The asymmetric unit of the terbium complex ((CH3OC6H5C4O3)3Tb(H2O)4(mu-CH3OC6H5C4O3)(CH3OC6H5C4O3)2Tb(H2O)5).H2O (4) contains two independent binuclear units which hydrogen bond to form an extended structure very similar to those of 1-3. The ionic polymers ([Ln(mu2-C4O4)(H2O)6][C6H5NHC4O3].4H2O)n [Ln=Eu (5), Gd (6), Tb (7)] result from the incomplete hydrolysis of the anilinosquarate ion during the attempted synthesis of Eu(III), Gd(III), and Tb(III) anilinosquarate complexes. However, complete hydrolysis of the substituent is accomplished by La(III) ions, and the neutral polymer (La2(mu2-C4O4)2(mu3-C4O4)(H2O)11.2H2O)n (8) is formed. In complexes 5-7, the central lanthanide atom has a square antiprismatic geometry, being bonded to two mu-1,2-bridging squarate and six aqua ligands. Two anilinosquarate counteranions participate in second-sphere coordination via direct hydrogen bonding to aqua ligands on each metal center. These counteranions, and the included waters of crystallization, serve to link neighboring cationic polymer chains via an extensive array of O-H...O hydrogen bonds to form a 3-dimensional network. The polymeric lanthanum complex 8 contains two different metal environments, each having distorted monocapped square antiprismatic geometry. For one lanthanum atom the coordination polyhedron comprises five aqua and four squarate ligands, while for the other the polyhedron consists of six aqua and three squarate ligands; in each case one of the aqua ligands occupies the capping position. The squarate ligand exhibits two coordination modes in 8 (mu-1,2- and mu-1,3-bridging), and neighboring polymer chains are cross-linked by hydrogen bonds to form a 3-dimensional network.  相似文献   

5.
Seven new d10 metal coordination polymers with isomeric benzenedicarboxylates and 3-(2-pyridyl)pyrazole ligands, [Zn2 L2(1,2-BDC)(H2O)]n ( 1), {[Cd2(H L)2(1,2-BDC)2] x H2O}n ( 2), [Cd(H L)(1,2-BDC)(H2O)]n (3), [Zn(H L)(1,3-BDC)(H2O) x 3H2O]n ( 4), [Cd2 L2(1,3-BDC)(H2O)]n (5), [Zn(H L)2(1,4-BDC)]n ( 6) and [Cd(H L)2(1,4-BDC)]n (7) (BDC = benzenedicarboxylate, H L = 3-(2-pyridyl)pyrazole), have been synthesized and structurally characterized by elemental analysis, IR and X-ray diffraction. Single-crystal X-ray analyses reveal that each complex takes a different one-dimensional (1D) chain structure. In 1-7, the BDCs act as bridging ligands, exhibiting rich coordination modes to link metal ions. The three BDC isomers exhibit different coordination modes: micro(1)-eta(1):eta(1)/micro(3)-eta(2):eta(1), micro(3)-eta(1):eta(2)/micro(3)-eta(2):eta(1), micro(2)-eta(1):eta(1)/micro(1)-eta(1):eta(0) and micro(1)-eta(1):eta(1)/micro(1)-eta(1):eta(0) for 1,2-BDC, micro(1)-eta(1):eta(1)/micro(1)-eta(1):eta(0) and micro(1)-eta(1):eta(0)/micro(2)-eta(2):eta(1) for 1,3-BDC, and micro(1)-eta(1):eta(0)/micro(1)-eta(0):eta(1), micro(1)-eta(1):eta(0)/micro(1)-eta(1):eta(0) and micro(1)-eta(1):eta(1)/micro(1)-eta(1):eta(1) for 1,4-BDC, respectively. In these complexes, H acts as a simple bidentate chelate ligand (in 2, 3, 4, 6 and 7), similar to 2,2'-bipyridine, or as a tridentate chelate-bridging ligand (in 1 and 5) via deprotonation of the pyrazolyl NH group and coordination of the pyrazolyl N atom to a second metal ion. The structural differences indicate that the backbone of such dicarboxylate ligands plays an important role in governing the structures of such metal-organic coordination architectures, and the chelating bipyridyl-like ligand H leads to the formation of these coordination polymers with one-dimensional structures by occupying the coordination sites of metal ions. Moreover, the photoluminescent properties of complexes were also studied in the solid-state at room temperature.  相似文献   

6.
The sulfonate derivate of chrysin coordinates with Ca2+ to form a novel tetra-nuclear ture of the complex is characterized by IR, 1H NMR and X-ray single-crystal diffraction analysis.The results show that the complex crystallizes in triclinic, space group Pi, cell parameter a =1.4725(6) nm, b= 1.6480(7) nm, c= 2.1006(8) nm, α= 83.928(7)°, ,β= 85.938(7)°, γ= 85.212(7)°,V = 5.041 (3) nm3, Dc = 1.476 g/cm3, Z = 2,μ =0.568 nm-1, F(000) = 2324, R = 0.0778, wR =0.1821. In the complex, four Ca2+ which are bridged by four 5-hydroxyanion-7-dihydro-xyflavone-6-sulfonate ligands with their carbonyl and 5-hydroxyanion group build an approximate square. The coordination number of Ca2+ is 7 and the coordinated atoms are all oxygen from the carbonyl, hydroxyl and suflo-group of 5-hydroxyanion-7-hydroxyflavone-6-sulfonate, H2O and DMSO. Four ligands locate on two sides of the square. Two of them on the same side are almost paralleled and aromatic ∏-∏ stacking exists between them. Ligands on the opposite side are nearly perpendicular to each other. Meanwhile, the solid of title compound has the photoluminescent phenomenon. The title compound emits green fluorescence (λem = 520 nm)when it is excited at the wavelength of 410 nm and its photoluminescent mechanism is discussed.  相似文献   

7.
An ionic heterometallic species [Y(DMF)(8)][Cu(4)(micro(3)-I)(2)(micro-I)(3)I(2)](1) was isolated from a solution of CuI, NH(4)I and YI(3)(Pr(i)OH)(4) in DMF-isopropoxyethanol, and was converted in a confined environment by progressive substitution of the DMF ligands with water molecules first into a 1D zig-zag structure [Y(DMF)(6)(H(2)O)(2)][Cu(7)(micro(4)-I)(3)(micro(3)-I)(2)(micro-I)(4)(I)](1infinity)(2) and finally into a 2D sheet [Y(DMF)(6)(H(2)O)(3)][Cu(I)(7)Cu(II)(2)(micro(3)-I)(8)(micro-I)(6)](2infinity)(3) by H-bond templating.  相似文献   

8.
The syntheses of Kuratowski-type pentanuclear clusters featuring {MZn(4)Cl(4)} cores (M(II) = Ru or Zn) that incorporate triazolate ligands are described. The coordination compounds are characterized by single-crystal X-ray diffraction, X-ray powder diffraction (XRD), FTIR- and UV-vis spectroscopy. [Ru(II)Zn(4)Cl(4)(Me(2)bta)(6)]·2DMF (Me(2)bta(-) = 5,6-dimethyl-1,2,3-benzotriazolate) (1) crystallizes in the cubic system, while [Zn(5)Cl(4)(ta)(6)] (ta(-) = 1,2,3-triazolate) (3) crystallizes in the tetragonal system. Both compounds feature structurally similar cluster topologies in which the central octahedrally coordinated metal ion is coordinated to six triazolate ligands. Each triazolate ligand is coordinated with two zinc ions (μ(3)-bridging mode), leading altogether to a pentanuclear cluster of T(d) point group symmetry. Photophysical investigations reveal that compound [Zn(5)Cl(4)(Me(2)bta)(6)]·2DMF (2) shows a short-lived excited electronic state, which can be populated with high quantum yield. The isostructural compound [Ru(II)Zn(4)Cl(4)(Me(2)bta)(6)]·2DMF (1), on the other hand, shows a long-lived photoexcited state, owing to an internal singlet to triplet conversion of the electronic states, as revealed by time-resolved fluorescence spectroscopy. Insights gained from these studies open up novel design strategies towards photocatalytically active metal-organic frameworks incorporating photoactive Kuratowski-type secondary building units such as MFU-4 (Metal-Organic Framework Ulm University-4).  相似文献   

9.
Chen CH  Cai J  Liao CZ  Feng XL  Chen XM  Ng SW 《Inorganic chemistry》2002,41(19):4967-4974
Seven cadmium(II) arenedisulfonate compounds, namely [Cd(2,2'-bpy)(2)(H(2)O)(peds)].4H(2)O (1), [Cd(2)(2,2'-bpy)(4)(H(2)O)(2)(1,5nds)](1,5nds).4H(2)O (2), [Cd(cyclam)(1,5nds)](2) (3), ([Cd(inia)(2)(H(2)O)(2)(2,6nds)].4H(2)O)(n)(4), ([Cd(inia)(2)(H(2)O)(2)(bpds)].4H(2)O)(n)(5), ([Cd(2)(inia)(4)(H(2)O)(3)(peds)(2)].2H(2)O)(n)(6), and [Cd(1,5nds)(H(2)O)(2)](n) (7), where 2,2'-bpy = 2,2'-bipyridyl, cyclam = 1,4,8,11-tetraazacyclotetradecane, inia = isonicotinamide, nds = naphthalenedisulfonate, bpds = 4,4'-biphenyldisulfonate, and peds = 4,4'-phenyletherdisulfonate, have been obtained from aqueous solution by using similar procedures and structurally characterized by X-ray single-crystal diffraction, IR spectroscopy, and thermal gravimetric analysis. In 1, the peds anion coordinates as a monodentate ligand, leading to a mononuclear unit. In 2 and 3, the 1,5nds anions coordinate as mu(2)-bridging ligands in different modes, producing charged or neutral dinuclear clusters. In 4 and 5, 2,6nds and bpds behave as mu(2)-spacers, resulting in 1-dimensional polymers. While in 6, the peds acts both as terminal and bridging ligands with the SO(3)(-) groups being either monodentate or mu(2)-bridging, creating a knotted 1-dimensional polymer with dinuclear clusters as the repeating units. In 7, 1,5nds acts as a bridging ligand with each SO(3)(-) coordinated as a mu(2)-bridging group to adjacent Cd(II) centers, leading to a 2-dimensional polymer. Together with the reported ([Cu(en)(2)(1,5nds)].2H(2)O)(n) (8), all of the six possible coordination modes adopted by organodisulfonate anions, on the assumption that each SO(3)(-) group could be monodentate or mu(2)-bridging, are realized by introducing nitrogen-containing organic ligands as auxiliaries.  相似文献   

10.
The sulfonate derivate of chrysin coordinates with Ca2+ to form a novel tetra-nuclear calcium complex [(Ca(C15H8O7S)(H2O)(DMSO)3(Ca(C15H8O7S)(DMSO)2]·4DMSO. The structure of the complex is characterized by IR,1H NMR and X-ray single-crystal diffraction analysis. The results show that the complex crystallizes in triclinic, space group PĪ, cell parametera = 1.4725(6) nm,b = 1.6480(7) nm,c = 2.1006(8) nm, α = 83.928(7)°, β= 85.938(7)°, γ= 85.212(7)°,V = 5.041(3) nm3,Dc = 1.476 g/cm3,Z = 2, μ=0.568 nm−1,F(000) = 2324,R = 0.0778,wR = 0.1821. In the complex, four Ca2+ which are bridged by four 5-hydroxyanion-7-dihydro-xyfla-vone-6-sulfonate ligands with their carbonyl and 5-hydroxyanion group build an approximate square. The coordination number of Ca2+ is 7 and the coordinated atoms are all oxygen from the carbonyl, hydroxyl and suflo-group of 5-hydroxyanion-7-hydroxyflavone-6-sulfonate, H2O and DMSO. Four ligands locate on two sides of the square. Two of them on the same side are almost paralleled and aromatic п-п stacking exists between them. Ligands on the opposite side are nearly perpendicular to each other. Meanwhile, the solid of title compound has the photoluminescent phenomenon. The title compound emits green fluorescence (λem = 520 nm) when it is excited at the wavelength of 410 nm and its photoluminescent mechanism is discussed.  相似文献   

11.
Liu YY  Ma JF  Yang J  Su ZM 《Inorganic chemistry》2007,46(8):3027-3037
Six new coordination polymers, namely [Zn1.5(BTC)(L1)(H2O)2].1.5H2O (1), [Zn3(BTC)2(L2)3] (2), [Zn3(BTC)2(L3)1.5(H2O)].H2O (3), [Co6(BTC)4(L1)6(H2O)3].9H2O (4), [Co1.5(BTC)(L2)1.5].0.25H2O (5), and [Co4(BTC)2(L3)2(OH)2(H2O)].4.5H2O (6), where L1 = 1,2-bis(imidazol-1-ylmethyl)benzene, L2 = 1,3-bis(imidazol-1-ylmethyl)benzene, L3 = 1,1'-(1,4-butanediyl)bis(imidazole), and BTC = 1,3,5-benzenetricarboxylate anion, were synthesized under hydrothermal conditions. In 1-6, each of L1-L3 serves as a bidentate bridging ligand. In 1, BTC anions act as tridentate ligands, and compound 1 shows a 2D polymeric structure which consists of 2-fold interpenetrating (6, 3) networks. In compound 2, BTC anions coordinate to zinc cations as tridentate ligands to form a net with (64.82)2(86)(62.8)2 topology. In compound 3, BTC anions act as tetradentate ligands and coordinate to zinc cations to form a net with (4.62.83)2(8.102)(4.6.83.10)2 topology. In compound 5, each BTC anion coordinates to three Co cations, and the framework of 5 can be simplified as (64.82)2(62.82.102)(63)2 topology. For 4 and 6, the 2D cobalt-BTC layers are linked by bis(imidazole) ligands to form 3D frameworks. In 6, the Co centers are connected by micro3-OH and carboxylate O atoms to form two kinds of cobalt-oxygen clusters. Thermogravimetric analyses (TGA) for these compounds are discussed. The luminescent properties for 1-3 and magnetic properties for 4-6 are also discussed in detail.  相似文献   

12.
Li J  Tao J  Huang RB  Zheng LS 《Inorganic chemistry》2012,51(11):5988-5990
Two 3D coordination polymers, [Co(24)(OH)(12)(SO(4))(12)(ip)(6)(DMSO)(18)(H(2)O)(6)]·(DMSO)(6)(EtOH)(6)(H(2)O)(36) (1·guests, ip = isophthalate) and [Ni(24)(OH)(12)(SO(4))(12)(ip)(6)(DMSO)(12)(H(2)O)(12)]·(DMSO)(6)(EtOH)(6)(H(2)O)(20) (2·guests), constructed with nanosized tetraicosanuclear Co(II) and Ni(II) wheels are solvothermally synthesized. Both complexes show intra- and interwheel dominant antiferromagnetic interactions.  相似文献   

13.
王永净  徐立 《结构化学》2008,27(3):297-300
A new bismuth compound Bi(Hsal)3(1,10-phenanthroline) (Hsal = O2CC6H4-2-OH) has been synthesized and characterized by single-crystal X-ray diffraction. It crystallizes in the triclinic system, space group P1, with a = 10.243(2), b = 11.905(3), c = 12.934(3) A, α= 76.780(6), β= 68.683(6),γ= 80.930(7)°, V = 1425.6(5) A^3, Dc = 1.865 g/cm^3, Mr = 800.51, F(000) = 780, μ= 6.247 mm^-1, Z = 2, R = 0.0456 and wR = 0.1131 for 5612 observed reflections (I 〉 2σ(I)). In this compound, three salicylate ligands coordinate to the Bi atom through the carboxylate groups to form a four-membered chelate ring, and phenanthroline ligand chelates the metal through two N atoms. The structure of the title compound manifests a possible coordination mode between bismuth subsalicylate and N atom containing amino acid in the biological system.  相似文献   

14.
LI  Jun-Xia DU  Zhong-Xiang 《结构化学》2012,31(6):877-883
Two isostructural helical coordination polymers, {[Cu(dps)2(Hssa)-(H2O)2]·3H2O}n (1) and {[Mn(dps)2(Hssa)(H2O)2]·2H2O}n (2), have been synthesized by the solvothermal reaction of dps and H3ssa with CuCl2 or Mn(CH3COO)2 (dps = 4,4'-dipyridylsulfide, H3ssa = 5-sulfosalicylic acid). Both compounds crystallize in monoclinic, space group P21/n. In either complex, the central metal ion (CuII for compound 1 and MnII for compound 2) is surrounded by one Hssa2ˉ ligand, two coordinated aquas and three dps molecules with a N3O3 donor set in a distorted octahedral coordination geometry. Half of the dps is monodentate and another half acts as μ2-bridging ligands. It is through the bridging function of dps that the neighbouring metal centers are connected and a one-dimensional helical structure of compound 1 or 2 forms. Fluorescence studies indicate that compounds 1 and 2 have blue emission bands centered at 403 and 405 nm, respectively.  相似文献   

15.
A binuclear complex of Zn(ii) with formula [Zn(dap(A)(2))](2).2.25DMF (.2.25DMF) and a Mn(ii) coordination polymer with formula [Mn(3)(dap(In)(2))(3)(H(2)O)(2).2DMSO](n) (.2DMSO)(n) have been prepared and structurally characterized [dap(A)(2) = dideprotonated form of 2,6-diacetylpyridine bis(anthraniloyl hydrazone); dap(In)(2) = doubly deprotonated form of 2,6-diacetylpyridine bis(isonicotinoyl hydrazone)]. In the Zn(ii) complex the molecular units are double helical, with the Zn(ii) ions in a square pyramidal environment. The Mn(ii) complex on the other hand is a coordination polymer containing two different types of hepta-coordinated Mn(ii) ions, which differ in their axial ligands. The magnetic properties of the Mn(ii) complex, along with those of a double helical pyridine bridged binuclear Ni(ii) complex, earlier synthesized by us, are also reported. The ability of the 2,6-diacetylpyridine bis(aroyl hydrazone) ligands to form double helical complexes is analyzed in terms of the conformational flexibility of the ligands. The differences in the magnetic properties of the micro-N bridged binuclear complexes formed by 1,1 azido N-bridging ligands, and pyridine N-bridging ligands, is analyzed with the help of EHMO calculations.  相似文献   

16.
The ability of NCNH(-) to construct transition metal coordination polymers and to transmit magnetic coupling was investigated. By introduction of various tetradentate Schiff base ligands (L) and different solvents (S), nine NCNH(-)-bridged manganese(III) coordination complexes were obtained. Their structures can be divided into three types: I) NCNH-bridged chains built on mononuclear [Mn(III)(L)] units, [Mn(III)(L)(mu(1,3)-NCNH)](n) (L=5-Brsalen (1), 5-Clsalen (2)); II) NCNH-bridged chains built on dinuclear [Mn(III) (2)(L)(2)] units, complexes 3-8, [Mn(III) (2)(L)(2)(mu(1,3)-NCNH)]ClO(4)S (L=salen, 5-Fsalen, 5-Clsalen, 5-OCH(3)salen; S=CH(3)OH or C(2)H(5)OH); III) NCNH-bridged Mn(III) dimers linked by hydrogen bonds into a 1D polymer, {[Mn(III)(3-OCH(3)salen)(H(2)O)](2)(mu(1,3)-NCNH)}ClO(4) x 0.5 H(2)O (9, salen=N,N'-bis(salicylidene)-1,2-diaminoethane). In these complexes, the N[triple chemical bond]C--NH(-) resonance structure dominates the bonding mode of the NCNH(-) ligand adopting the mu(1,3)-bridging mode. Magnetic characterization shows that the asymmetric NCNH(-) bridge transmits antiferromagnetic interaction between Mn(III) ions and often favors the weak ferromagnetism caused by spin canting in these one-dimensional chains. However, these complexes exhibit different magnetic behaviors at low temperatures.  相似文献   

17.
Five novel lanthanide complexes with the formulas [Nd(bta)(H2O)2.4.35H2O]n(1), [Sm(bta)(H2O)2.4.5H2O]n (2), [Eu(bta)(H2O).1.48H2O]n (3), [Tb(bta)(H2O).1.31H2O]n (4), and [Yb(bta)(H2O).H2O]n (5) (H3bta = 1,3,5-benzenetriacetic acid) have been prepared by using the corresponding lanthanide salt and H3bta. The results of an X-ray crystallographic analysis revealed that all the complexes have three-dimensional channel-like structures, in which the bta3- ligands adopt different coordination modes: monodentate and mu2-eta2:eta1-bridging coordination modes in 1, 2, and 5 and mu2-eta1:eta1-bridging and mu2-eta2:eta1-bridging coordination modes in 3 and 4, respectively. Complexes 1 and 2, as well as 3 and 4, are isostructural, respectively, in which all the Ln(III) (Ln = Nd, Sm, Eu, and Tb) atoms are nine-coordinated, while the Yb(III) atoms in complex 5 are eight-coordinated. Both complexes 3 and 4 showed strong luminescence upon excitation, and their luminescence decay curves fit well with single exponential decays of which the lifetime is 0.45 ms for 3 and 1.0 ms for 4. The magnetic properties of the complexes were investigated in the temperature range of 1.8-300 K.  相似文献   

18.
Three new copper(ii) complexes of formula [Cu(tppz)(NCO)(2)].0.4H(2)O (1), [Cu(2)(tppz)Br(4)](2) and [Cu(3)(tppz)(C(5)O(5))(3)(H(2)O)(3)].7H(2)O (3)[tppz = 2,3,5,6-tetrakis(2-pyridyl)pyrazine; C(5)O(5)(2-) = croconate, dianion of 4,5-dihydroxycyclopent-4-ene-1,2,3-trione] have been synthesised and structurally characterized by X-ray diffraction methods. The structure of complex is made up of neutral [Cu(tppz)(NCO)(2)] mononuclear units and uncoordinated water molecules. The mononuclear units are grouped by pairs to give a rather short copper-copper distance of 3.9244(4) angstroms. The structure of complex 1 consists of neutral tppz-bridged [Cu(2)(tppz)Br(4)] dinuclear units, the copper-copper separation across tppz being 6.6198(1) angstroms. The dinuclear units are further connected through weak, double out-of-plane Cu-Br...Cu bridges [Br(1)...Cu(1a) 4.0028(17) angstroms] creating tetranuclear entities, the copper-copper separation through this interaction being 4.3299(21) angstroms. The structure of complex 3 is built of neutral [Cu(3)(tppz)(C(5)O(5))(3)(H(2)O)(3)] trinuclear units and uncoordinated water molecules. Tppz and one of the croconate groups act as bridging ligands, the former exhibiting the bis-terdentate coordination mode and the latter adopting an unusual asymmetrical bis-bidentate bridging mode through three adjacent oxygen atoms. The other two croconate groups exhibit the bidentate coordination mode. The intramolecular copper-copper separations are 6.5417(9)(across tppz) and 4.3234(9) angstroms (through bis-bidentate croconato). The magnetic properties of 2 and 3 have been investigated in the temperature range 1.9-300 K. The magnetic behaviour of complex 2 is that of an antiferromagnetically coupled copper(II) dimer (J = -40.9 cm(-1), the Hamiltonian being H = -JS(A).S(B)). In the case of compound , the chi(M) T vs. T plot is typical of an overall antiferromagnetic coupling with a low-lying spin doublet being fully populated at T < 10 K. The values of the intramolecular antiferromagnetic interactions in 3 are -19.9 (across tppz) and -32.9 cm(-1)(through bridging croconato). Density functional type calculations were performed on model dinuclear fragments of 3 in order to analyze the efficiency of the exchange pathways involved and also to substantiate the coupling parameters.  相似文献   

19.
[Cd(mu2-N,O-p-NH2C6H4SO3)2(H2O)2]n (1) is a layered coordination compound. The solid-vapor reactions between crystalline 1 and a series of volatile amines were investigated and the corresponding amine adducts were characterized by EA, TGA, PXRD and IR. Among them, the C2H5NH2 and C3H7NH2 adducts, namely [Cd(C2H5NH2)4(H2O)2](H2NC6H4SO3)2 (3) and [Cd(C3H7NH2)4(O-p-H2NC6H4SO3)2].C3H7NH2 (4), grew into single crystals in situ from the solid-vapor reaction processes and their crystal structures were characterized. In both cases, 4 mol equiv. of amine molecules coordinate to Cd(II) via replacing the N,O-p-NH2C6H4SO3 ligands or coordinated water molecules. The single-phase product suggests that the solid-vapor reaction between the metal sulfonate and volatile alkylamines could be used as a green process to synthesize monoamine-coordinated Cd(II) complexes without any solvent and routine separation. Finally, the substitution reaction is reversible at room conditions and selective for primary alkylamines.  相似文献   

20.
唐云志  周挺 《无机化学学报》2005,21(9):1435-1436
The crystal structure of [Cd(BDA)(phen)2(H2O)](H2O)2 (1) (BDA=6,6′-dibromo-2,2′-dimethoxy-1,1′-binaphthylene-4,4′-disulfonate, phen=1,10-phenanthroline)consists of a cadmium center whose coordination environment can be best described as a slightly distorted octahedron defined four nitrogen atoms from two phen ligands and two oxygen atoms differently from BDA ligand and water. There are strong hydrogen-bonding interactions between water and sulfonate group of BDA ligands to construct the 3D network. CCDC: 277921.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号