首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Quantitative determination by liquid chromatography (LC) coupled with mass spectrometry (MS) was achieved for the following 10 toxins found in association with diarrhetic shellfish poisoning: okadaic acid (OA), dinophysistoxin-1 (DTX1), 7-O-palmitoylokadaic acid (palOA), 7-O-palmitoyldinophysistoxin-1 (pa1DTX1), pectenotoxin-1 (PTX1), pectenotoxin-2 (PTX2), pectenotoxin-2 seco acid (PTX2SA), pectenotoxin-6 (PTX6), yessotoxin (YTX), and 45-hydroxyyessotoxin (YTXOH). Toxins in 2 g of the adductor muscle or the digestive glands of scallops, Patinopecten yessoensis, were extracted with 18 ml of methanol-water (9:1, v/v), freed of polar contaminants by partition between chloroform and water, and treated by solid-phase extraction on a silica cartridge column. Samples containing YTXOH were purified separately on a buffered reversed-phase column. Chromatographic separation was achieved by the following combinations of columns and mobile phases: a Symmetry C18 column with acetonitrile-0.05% acetic acid (7:3, v/v) for OA, DTX1, PTX6 and PTX2SA; a Develosil ODS column with the same mobile phase for PTX1 and PTX2; a Capcellpak column with methanol-2.5% acetic acid (98:2, v/v) for palOA and palDTX1; and an Inertsil ODS column with methanol-0.2 M ammonium acetate (8:2, v/v) for YTX and YTXOH. Carboxylic acid toxins were selectively monitored on [M-H]- ions, sulfated toxins on [M-Na]-ions, and neutral toxins on [M+NH4]+ ions. Average recoveries of the toxins spiked to tissue homogenates ranged from 70 to 134%. Detection limits in the muscle ranged from 5 to 40 ng/g and those in the digestive glands from 10 to 80 ng/g.  相似文献   

2.
Marine algal toxins of the okadaic acid group can occur as fatty acid esters in blue mussels, and are commonly determined indirectly by transformation to their parent toxins by alkaline hydrolysis. Some data are available regarding the identity of the fatty acid esters, mainly of palmitic acid (16:0) derivatives of okadaic acid (OA), dinophysistoxin-1 (DTX1) and dinophysistoxin-2 (DTX2). Other fatty acid derivatives have been described, but with limited mass spectral data. In this paper, the mass spectral characterization of the [M-H](-) and [M+Na](+) ions of 16 fatty acid derivatives of each of OA, DTX1 and DTX2 is presented. The characteristic fragmentation of [M+Na](+) ions of OA analogues provided a useful tool for identifying these, and has not been described previously. In addition, a set of negative ion multiple reaction monitoring (MRM) methods was developed for direct determination of 16 fatty acid esters of OA, 16 fatty acid esters of DTX1 and 16 fatty acid esters of DTX2 in shellfish extracts. The MRM methods were employed to study the profiles of fatty acid esters of OA analogues in blue mussels and to compare these with fatty acid ester profiles reported for other groups of marine algal toxins.  相似文献   

3.
A method that uses liquid chromatography with tandem mass spectrometry (LC/MS/MS) has been developed for the highly sensitive and specific determination of amnesic shellfish poisoning toxins, diarrhetic shellfish poisoning toxins, and other lipophilic algal toxins and metabolites in shellfish. The method was subjected to a full single-laboratory validation and a limited interlaboratory study. Tissue homogenates are blended with methanol-water (9 + 1), and the centrifuged extract is cleaned up with a hexane wash. LC/MS/MS (triple quadrupole) is used for quantitative analysis with reversed-phase gradient elution (acidic buffer), electrospray ionization (positive and negative ion switching), and multiple-reaction monitoring. Ester forms of dinophysis toxins are detected as the parent toxins after hydrolysis of the methanolic extract. The method is quantitative for 6 key toxins when reference standards are available: azaspiracid-1 (AZA1), domoic acid (DA), gymnodimine (GYM), okadaic acid (OA), pectenotoxin-2 (PTX2), and yessotoxin (YTX). Relative response factors are used to estimate the concentrations of other toxins: azaspiracid-2 and -3 (AZA2 and AZA3), dinophysis toxin-1 and -2 (DTX1 and DTX2), other pectenotoxins (PTX1, PTX6, and PTX11), pectenotoxin secoacid metabolites (PTX2-SA and PTX11-SA) and their 7-epimers, spirolides, and homoYTX and YTX metabolites (45-OHYTX and carboxyYTX). Validation data have been gathered for Greenshell mussel, Pacific oyster, cockle, and scallop roe via fortification and natural contamination. For the 6 key toxins at fortification levels of 0.05-0.20 mg/kg, recoveries were 71-99% and single laboratory reproducibilities, relative standard deviations (RSDs), were 10-24%. Limits of detection were <0.02 mg/kg. Extractability data were also obtained for several toxins by using successive extractions of naturally contaminated mussel samples. A preliminary interlaboratory study was conducted with a set of toxin standards and 4 mussel extracts. The data sets from 8 laboratories for the 6 key toxins plus DTX1 and DTX2 gave within-laboratories repeatability (RSD(R)) of 8-12%, except for PTX-2. Between-laboratories reproducibility (RSDR) values were compared with the Horwitz criterion and ranged from good to adequate for 7 key toxins (HorRat values of 0.8-2.0).  相似文献   

4.
Dinophysis spp. blooms and related shellfish toxicity events of diarrhetic shellfish poisoning (DSP) have been the most reported toxicity event through the Croatian National monitoring program. With the aim to characterize the DSP toxin profile in shellfish farmed in Croatia, for the first time a complete analysis of the toxin profile of Croatian mussels has been carried out using the LC-MS/MS technique. The obtained results showed okadaic acid (OA) as the main toxin contaminating Croatian mussels at that time. The maximum concentration of OA in shellfish tissue was recorded 12 days after the Dinophysis fortii bloom, thus suggesting that rapid growth of the toxin level in the shellfish occurred in the first week after the bloom while it was slower in the second week. Furthermore, the presence of only OA at concentrations which could endanger human health suggests D. fortii as the main organism responsible for the toxic event that occurred in Lim Bay. The presence of gymnodimine and spirolides in Croatian mussel has been detected for the first time, while the presence of yessotoxin and pectenotoxin-2 is confirmed.  相似文献   

5.
A modification of the high-performance liquid chromatographic method with fluorimetric detection method for the determination of diarrhetic shellfish poisoning toxins was developed to completely avoid the use of dangerous chlorinated solvents. The method was validated for the toxin okadaic acid (OA) over a period of 6 months where 12 calibrations were performed and 72 samples were analyzed. Analysis of toxic and non-toxic mussels, clams and scallops demonstrated its selectivity. Linearity was observed in the tested range of interest for monitoring purposes of edible shellfish, from the limit of detection (0.3 microg OA/g hepatopancreas) to 13 microg OA/g hepatopancreas. Intra-assay precision of the method was 7% RSD at the quantification limit (0.97 microg OA/g hepatopancreas at S/N=10). Accuracy was tested in triplicate recovery experiments from OA-spiked shellfish where recovery ranged from 92 to 106% in the concentration range of 0.8 to 3.6 microg OA/g hepatopancreas. Useful information on critical factors affecting calibration and reproducibility is also reported. Good correlation (R=0.87) was observed between the results of the method and those of the method of Lee, after the analysis of 45 samples of mussels from the galician rias.  相似文献   

6.
Li A  Ma F  Song X  Yu R 《Journal of chromatography. A》2011,1218(11):1437-1442
Solid-phase adsorption toxin tracking (SPATT) technology was developed as an effective passive sampling method for dissolved diarrhetic shellfish poisoning (DSP) toxins in seawater. HP20 and SP700 resins have been reported as preferred adsorption substrates for lipophilic algal toxins and are recommended for use in SPATT testing. However, information on the mechanism of passive adsorption by these polymeric resins is still limited. Described herein is a study on the adsorption of OA and DTX1 toxins extracted from Prorocentrum lima algae by HP20 and SP700 resins. The pore size distribution of the adsorbents was characterized by a nitrogen adsorption method to determine the relationship between adsorption and resin porosity. The Freundlich equation constant showed that the difference in adsorption capacity for OA and DTX1 toxins was not determined by specific surface area, but by the pore size distribution in particular, with micropores playing an especially important role. Additionally, it was found that differences in affinity between OA and DTX1 for aromatic resins were as a result of polarity discrepancies due to DTX1 having an additional methyl moiety.  相似文献   

7.
液相色谱-大气压化学电离质谱法分析人参中的人参皂甙   总被引:1,自引:0,他引:1  
马小琼  徐青  梁鑫淼 《色谱》2005,23(4):389-393
研究了用反相高效液相色谱-大气压化学电离质谱(HPLC/APCI-MS)分析人参皂甙的方法。液相色谱采用乙腈-水流动相进行梯度洗脱,质谱采用正负离子同时扫描并结合二级质谱进行定性,用选择反应离子模式(SRM)测定检测限。实验发现虽然人参皂甙是热不稳定物质,但在大气压化学电离质谱的高温汽化过程中仍能检测到很强的负离子分子离子峰,而且随着汽化温度的升高,人参皂甙的负离子分子离子峰的强度增加。该方法对人参皂甙Rb1和Rg1的检测限分别为1.2×10-13 g和3.0×10-14 g,并检测出白参中包括丙二酰人参皂甙在内的29种人参皂甙。该法灵敏度高,重复性好,结果准确,能有效地对药材提取物中的多种人参皂甙进行检测和结构分析。  相似文献   

8.
Dextran was partially hydrolyzed with 0.1 mol/l HCl and the hydrolysate was derivatized with 8-aminonaphthalene-1,3,6-trisulfonate (ANTS) by reductive amination. The derivatized-oligosaccharide mixture was separated by capillary electrophoresis (CE) in a buffer of 1% HAc-NH4OH, pH 3.4, and the separated components were detected on-line by electrospray ionization quadrupole ion trap mass spectrometry (ESI-QIT-MS) in the negative ion mode. A mass accuracy lower than 0.01% could be achieved and as low as 1.6 pmol of detxran octaose could be detected. ANTS-derivatized dextran oligosaccharide with a degree of polymerization (DP) lower than 6 produced both [M-H]- and [M-2H]2- ions, whereas those with a DP of 6 or higher than 6 produced only [M-2H]2- ion. As 1< or =DP< or =6, the percentage of [M-2H]2- ion in the total ions of [M-H]- and [M-2H]2- was found to be a linear function of the logarithmic DP. Molecular mass determination with ESI-QIT-MS strengthens the power of CE analysis of oligosaccharides.  相似文献   

9.
The acid-catalyzed inter-conversion of spiroketal isomers of pectenotoxins PTX1, PTX6 and PTX2 were studied by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-MS-MS). Using a C8-silica reversed-phase column and a mobile phase of aqueous acetonitrile containing 2 mM ammonium formate and 50 mM formic acid, the known spiroketal stereoisomers of PTX1 eluted in order of PTX1, PTX4 and PTX8, while those of PTX6 eluted in the order PTX6, PTX7 and PTX9. Acid treatment of PTX2 yielded two novel spiroketal stereoisomers, which have been named PTX2b and PTX2c. LC-MS-MS spectra obtained for the [M+NH4]- ions of PTX2, PTX2b and PTX2c were essentially identical. As an application of the LC-MS-MS methodology, a sample of the toxic dinoflagellate Dinophysis acuta collected from the coast of New Zealand was analyzed for pectenotoxins. PTX2 and a new pectenotoxin, which has been named PTX11, were detected as the most predominant compounds. Novel PTX2 and PTX11 isomers were also found in the D. acuta although the levels of these compounds were low.  相似文献   

10.
An interlaboratory study was conducted for the determination of paralytic shellfish poisoning (PSP) toxins in shellfish. The method used liquid chromatography with fluorescence detection after prechromatographic oxidation of the toxins with hydrogen peroxide and periodate. The PSP toxins studied were saxitoxin (STX), neosaxitoxin (NEO), gonyautoxins 2 and 3 (GTX2,3 together), gonyautoxins 1 and 4 (GTX1,4 together), decarbamoyl saxitoxin (dcSTX), B-1 (GTX5), C-1 and C-2 (C1,2 together), and C-3 and C-4 (C3,4 together). B-2 (GTX6) toxin was also included, but for qualitative identification only. Samples of mussels, both blank and naturally contaminated, were mixed and homogenized to provide a variety of PSP toxin mixtures and concentration levels. The same procedure was followed with samples of clams, oysters, and scallops. Twenty-one samples in total were sent to 21 collaborators who agreed to participate in the study. Results were obtained from 18 laboratories representing 14 different countries.  相似文献   

11.
In contrast to the fragmentation of the corresponding alkyl aryl ethers, characteristic [M-H]+ and [M-H, -CO]+ fragments were observed in the fragmentation of 5-nitro(halo)-substituted 8-alkoxyquinolines. It was found by means of deuterium labeling that a hydrogen atom is split out primarily from the alkoxy group. It was demonstrated that an [M-H, -CO]+ fragment was formed from the [M-H]+ ion, which has a three-ring structure and a quaternary nitrogen atom. The formation of an [M-CO]+ fragment is characteristic for the fragmentation of 5(7)-nitro(halo)-substituted 8-hydroxyquinolines. The interrelationship between the intensities of the [M-H]+, [M-H, -CO]+, and [M-CO]+ ion peaks and the protonation constants (pKa) of the investigated compounds is discussed.Communication 4 from the series Mass spectrometry of biologically active substances, See [1] for communication 3.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 6, pp. 786–791, June, 1984.  相似文献   

12.
Ginsenosides containing different numbers of glycosyl groups can be easily differentiated based on the formation of characteristic ginsenoside-acetate adduct anions and deprotonated ginsenosides generated by electrospray ionization (ESI) of methanolic solutions of ginsenosides (M) and ammonium acetate (NH4OAc). Ginsenosides containing two glycosyl groups gave a characteristic mass spectral pattern consisting of [M+2OAc]2-, [M-H+OAc]2- and [M-2H]2- ions with m/z values differing by 30 Th, while this mass spectral pattern was not observed for ginsenosides containing one glycosyl group. Formation of [M+2OAc]2- was influenced by the chain length of glycosyl groups and was used to differentiate the ginsenosides containing different combinations of monosaccharide and disaccharide units in the glycosyl groups. Under identical collisional activation conditions, [M+OAc]-, [M-H+OAc]2- and [M+2OAc]2- underwent proton abstractions predominantly to generate [M-H]-, [M-2H]2- and [M-H+OAc]2- ions, respectively. The ion intensity ratios, I[M-H](-/I) [M+OAc]-, I[M-2H](2-/I) [M-H+2OAc]2- and I[M-H+OAc](2-/I) [M+OAc]2-, being sensitive to the structural differences of ginsenosides, could differentiate the isomeric ginsenosides, including (i) Rf, F11 and Rg1, (ii) Rd and Re, and (iii) Rb2 and Rc. Additionally, NH4OAc was found to enhance the sensitivity of detection of ginsenosides in the form of [M-H]- down to the femtomole level.  相似文献   

13.
《Analytical letters》2012,45(11):1365-1376
A capillary electrophoresis-based enzyme immunoassay (CE-EIA) with electrochemical (EC) detection system was developed for the determination of two diarrheic shellfish poisoning (DSP) toxins okadaic acid (OA) and dinophysistoxin2 (DTX2). In this method, after the competitive immunoreaction in liquid phase, the horseradish peroxidase (HRP)-labeled antigen (Ag*) and the bound enzyme-labeled complex (Ag*-Ab) were separated and then the system of HRP catalyzing H2O2/o-aminophenol (OAP) reaction was adopted. The limit of detection (S/N = 3) was determined to be 0.05 and 0.07 ng/mL for OA and DTX2, respectively. The total analysis time was less than 40 min. The developed CE-EIA with EC detection system was capable of quantitatively detecting OA and DTX2 contents in the tested contaminated samples, and the results were compared with the same samples analyzed through enzyme-linked immunosorbent assay (ELISA). Consistent results between CE-EIA with EC detection and ELISA were found in most of the tested samples. The proposed system appeared to be more sensitive and faster than ELISA for determination of OA and DTX2 in shellfish meat extracts. Real shellfish samples were validated in recovery test, and the recoveries tested by the proposed method were 91.7–108.3% and 95.2–112.5% for OA and DTX2, respectively. The CE-EIA with EC detection provides a valid and sensitive analytical approach, not previously available, for the determination of OA and DTX2 in shellfish samples.  相似文献   

14.
Benzo[a]pyrene diol epoxide (BPDE) was reacted in vitro with (2'-deoxy)nucleotides and with calf thymus DNA. The modified DNA was enzymatically hydrolyzed to the 5'-monophosphate nucleotides using deoxyribonuclease I (DNA-ase I), nuclease P1 and snake venom phosphodiesterase (SVP). Most of the unmodified nucleotides were removed using solid phase extraction (SPE) in a polystyrene divinylbenzene copolymer. Three adducts could be detected and identified using capillary zone electrophoresis(negative)-ion electrospray ionization-mass spectrometry (CZE-(-)-ESI-MS) in conjunction with sample stacking. This way, not only a BPDE-dGMP adduct [(M-H)(-) at m/z 648], a well-known nucleotide adduct, could be retrieved, but also a BPDE-dAMP [(M-H)(-) at m/z 632] and a BPDE-dCMP adduct [(M-H)(-) at m/z 608] could be detected for the first time. The presence of the prominent ion at m/z 195 (the deoxyribose-phosphate ion) in the three low-energy collision-activated decomposition (CAD) spectra indicated that the adducts were formed through base-alkylation. CZE-positive ion ESI-MS/MS experiments were performed to obtain further information on base-alkylation. The absence of the loss of NH(3) from the nucleobase in each CAD spectrum points to an alkylated exocyclic NH(2) position of the nucleobase. So, the three adducts could be identified as BPDE-N(2)-dGMP, BPDE-N(6)-dAMP and BPDE-N(4)-dCMP using CZE-ESI-MS and CZE-ESI-MS/MS.  相似文献   

15.
A non-covalent-bonded dimer was detected in the positive ion electrospray ionisation (ESI) mass spectra of a synthetic impurity. In tandem mass spectrometry (MS/MS) experiments using collision-induced dissociation (CID), the ion was found to behave as a [M+H]+-type precursor ion for fragmentation until MS5. The dimer was probably formed through multi-hydrogen bonds over a proton bridge. When the fragmentation occurred at the center of the bridge, the dimer was broken apart to give monomer fragments at MS6. However, no corresponding deprotonated dimer [2M-H]- was found in the negative ion ESI spectra. The dimer was extremely stable, and it could still be observed when a fragmentation voltage of up to 50 V was applied in the ionisation source. The formation of the non-covalent dimer was also found to be instrument-dependent, but independent of sample concentration. Accurate mass measurements of the [2M+H]+ and [M+H]+ ions, and their MSn product ions, provided the basis for assessing the fragmentation mechanism proposed for [2M+H]+. The fragmentation pathway was also illustrated for the deprotonated molecule [M-H]-.  相似文献   

16.
Okadaic acid (OA) and dinophysistoxins-1 and -2 (DTX1, DTX2), the toxins responsible for incidents of diarrhetic shellfish poisoning (DSP), can occur as complex mixtures of ester derivatives in both plankton and shellfish. Alkaline hydrolysis is usually employed to release parent OA/DTX toxins, and analyses are conducted before and after hydrolysis to determine the concentrations of nonesterified and esterified toxins. Recent research has shown that other toxins, including pectenotoxins and spirolides, can also exist as esters in shellfish, but these toxins cannot survive alkaline hydrolysis. A promising alternative approach is enzymatic hydrolysis. In this study, two enzymatic methods were developed for the hydrolysis of 7-O-acyl esters, “DTX3,” and the carboxylate esters of OA, “diol-esters.” Porcine pancreatic lipase induced complete conversion of DTX3 to OA and DTXs within one hour for reference solutions. The presence of mussel tissue matrix reduced the rate of hydrolysis, but an optimized lipase concentration resulted in greater than 95% conversion within four hours. OA-diol-ester was hydrolyzed by porcine liver esterase and was completely converted to OA in less than 30 min, even in the presence of mussel tissue matrix. Esters and OA/DTX toxins were all monitored by LC–MS. Further experiments with pectenotoxin esters indicated that enzymatic hydrolysis could also be applied to esters of other toxins. Enzymatic hydrolysis has excellent potential as an alternative to the conventional alkaline hydrolysis procedure used in the preparation of shellfish samples for the analysis of toxins.  相似文献   

17.
At present, edible marine shellfishes are often contaminated by a combination of different kinds of marine lipophilic toxins. In this study, several common lipophilic shellfish toxins (LSTs) in marine shellfishes were simultaneously detected by liquid chromatography-tandem mass spectrometry, and the safety risk of commercial marine shellfishes was evaluated based on the materiome of LSTs. Under the optimal conditions, the developed method displayed satisfactory recovery values (63.2%–88.8%), precision (relative standard deviations ≤ 14.5%), and sensitivity (limit of detection in the range of 0.54–2.69 ng g?1) for all analytes. Among the 105 commercially available shellfish samples, 42.86% of the samples had at least one kind of toxins. The highest average content was 47.60 μg kg?1 of DTX1, which was the most serious contaminant in marine shellfish samples. Total Exposure Risk Index (∑ERI) was calculated based on Total Daily Intake (TDI) and Acute Reference Dose (ARfD) of each toxin to evaluate the safety risk of commercial marine shellfishes. The results indicated that the risk of toxin poisoning was 19.05% in the commercial available marine shellfishes, and the scallops (Chlamys farreri) have the highest poisoning risk among different shellfishes used in this study. In summary, a new method based on the combined contamination of LSTs was successfully developed for the risk assessment of commercial marine shellfishes. The proposed method is stricter than that in the relevant rules of European Food Safety Authority (EFSA) and can benefit to protect shellfish consumers from poisoning risk.  相似文献   

18.
Three different sample preparation techniques (i) solid-phase extraction, (ii) reverse osmosis and (iii) vacuum distillation have been investigated and the recoveries were compared for determination of highly water-soluble benzene and stilbene sulfonic acids in aqueous environment by liquid chromatography with photodiode array (PDA) and electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). The recoveries were quite high using vacuum distillation (>90%) compared to solid phase extraction and reverse osmosis. The negative ion ESI mass spectra containing the peaks of quasimolecular ion [M-H]- allow the molecular mass determination of unknown compounds whereas the structures were proposed using fragments obtained from MS/MS analysis of [M-H]- ions. At lower fragmentation voltages only the quasimolecular ion [M-H]- was observed and as fragmentation voltages increased, it led to the formation of fragment ions corresponding to [M-H-SO3]-, [M-H-SO2]-, and SO3-. The detection limits were 1-28 microg/L with LC-ESI-MS. The sample collected from wastewater treatment plant was found to contain 21.1, 13.3, 12.1, 41.8 and 9.9 microg/L of cis-4,4(l)-diaminostilbene-2,2(l)-disulfonic acid (cis-DASDA), trans-4,4(l)-diaminostilbene-2,2(l)-disulfonic acid (trans-DASDA), 3-amino acetanilide-4-sulfonic acid (3-AASA), 4-chloroaniline-2-sulfonic acid (4-CASA), 2-chloroaniline-5-sulfonic acid (2-CASA), respectively.  相似文献   

19.
Pectenotoxin‐2 (PTX2) is a shellfish toxin and has a non‐anomeric spiroacetal, which is not stabilized by an anomeric effect. The selective construction of the non‐anomeric spiroacetal has been a major problem in the synthesis of PTX2. Described herein is the stereoselective total synthesis of PTX2 via the isomerization of anomeric spiroacetal pectenotoxin‐2b (PTX2b). The synthesis of PTX2b was achieved by a simple process including sulfone‐mediated assembly of spirocyclic and bicyclic acetals and subsequent macrocyclization by ring‐closing olefin metathesis. Finally, the selective construction of PTX2 was accomplished by the early termination of a dynamic transition process to equilibrium in the acid‐catalyzed isomerization of anomeric PTX2b. [6,6]‐Spiroacetal pectenotoxin‐2c (PTX2c) was also synthesized from PTX2b. The cytotoxicity assay of the synthetic compounds against HepG2 and Caco2 cancer cells showed a potency of the order: PTX2?PTX2b>PTX2c.  相似文献   

20.
Azaspiracid is the main toxin responsible for a number of recent human intoxications in Europe resulting from shellfish consumption. The first micro liquid chromatography-tandem mass spectrometry (micro-LC-MS-MS) method was developed for the determination of this novel shellfish poisoning toxin in mussels. The analyte was extracted from whole mussel meat with acetone and chromatographed on a C18 reversed-phase column (1.0 mm I.D.) by isocratic elution at 30 microl/min with acetonitrile-water (85:15, v/v), containing 0.03% trifluoroacetic acid. The toxin was ionised in an ionspray interface operating in the positive ion mode, where only the intact protonated molecule, [M+H]+, was generated at m/z 842. This served as precursor ion for collision-induced dissociation and three product ions, [M+H-nH2O]- with n=1-3, were identified for the unambiguous toxin confirmation by selected reaction monitoring LC-MS-MS analysis. A detection limit of 20 pg, based on a 3:1 signal-to-noise ratio, was achieved for the analyte. This LC-MS-MS method was successfully applied to determine azaspiracid in toxic cultivated shellfish from two regions of Ireland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号