首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
The Hall resistivity (ρxy) and the longitudinal resistivity (ρxx) in c-axis-oriented superconducting MgB2 thin films have been investigated in extended fields up to 18 T. We have observed a scaling behavior between the Hall resistivity and the longitudinal resistivity, , where the exponent (β) is observed to be independent of the temperatures and the magnetic fields. For a wide magnetic field region from 1 to 18 T and a wide temperature region from 10 to 28 K, a universal power law with β = 2.0 ± 0.1 was observed in c-axis-oriented MgB2 thin films. These results can be well interpreted by using recent models.  相似文献   

2.
We analyze the influence of residual two-photon excitation (2PE) in two-color (two-photon) optical beam induced current (2CE-OBIC) generation in wide band gap semiconductor samples. 2CE-OBIC generation is accomplished with two confocal excitation beams of separation angle θ and wavelengths λ1 and λ2 where , λe = hc/Eb, h is the Planck’s constant, c is speed of light in vacuum, and Eb is the energy band gap. Because the conduction band of the sample is a continuum, at least one excitation beam would also contribute an undesirable 2PE-OBIC signal that degrades the signal-to-noise ratio of the measured 2CE-OBIC response and broadens the effective OBIC distribution in the sample particularly when θ ≠ 0 or π. We show that the deleterious effects of crosstalk are reduced by a careful selection of λ1 and λ2 and the relative excitation beam intensities. λ1 and λ2 should be chosen to minimize the ratio of the two-photon absorption coefficients (β1β2) to the 2CE absorption coefficient β12 or at least satisfy the constraint: β1 + β2  β12. Keeping the two excitation intensities equal is beneficial only when β1 = β2. Otherwise, it is advantageous to bias the intensity ratio towards the wavelength with a lower 2PE absorption coefficient.  相似文献   

3.
Bi2Te3 films were prepared by thermal evaporation technique. X-ray diffraction analysis for as-deposited and annealed films in vacuum at 150 °C were polycrystalline with rhombohedral structure. The crystallite size is found to increase as the film thickness increases and has values in the range 67–162 nm. The optical constants (the refractive index, n, and absorption index, k) were determined using transmittance and reflectance data in the spectral range 2.5–10 μm for Bi2Te3 films with different thicknesses (25–99.5 nm). Both n and k are independent on the film thickness in the investigated range. It was also found that Bi2Te3 is a high refractive index material (n has values of 4.7–8.8 in the wavelength range 2.5–10 μm). The allowed optical transitions were found to be direct optical transitions with energy gap  eV. The optical conductivities σ1 = ƒ() and σ2 = f() show distinct peaks at about 0.13 and 0.3 eV, respectively. These two peaks can be attributed to optical interband transitions.  相似文献   

4.
The structural–microstructural characterization and defect structure of Ru based magnetosuperconductor RuSr2Eu1.6Ce0.4Cu2O10−δ has been investigated by selected area electron diffraction pattern and high resolution electron microscopy. Under the present investigations, RuSr2Eu1.6Ce0.4Cu2O10−δ magnetosuperconductor shows the presence of both Ru-1222 and Ru-1212 phases. Analysis of the selected area electron diffraction pattern indicates superstructure in Ru-1212 while Ru-1222 phase does not show the presence of superlattice structure. A careful and detailed investigations of the HRTEM image shows the presence of defects like 90° domains, intergrowths, and dislocations.  相似文献   

5.
Epoxy resin (ER)/graphite nanosheet (GN) composites with a low percolation threshold (owing to particular geometry of GN with the high aspect ratio) were fabricated. The nonlinear conduction behavior of ER/GN composites above the percolation threshold by the action of variable DC electrical field was investigated. For specimens, the current density or current reduces with decreasing graphite nanosheets concentrations, and the JE curves are well fitted by a cubic, J=σ1E+σ3E3. Moreover, the crossover current density Jc, at which nonlinearity takes place, scales with the linear conductivity σ1 as with x≈1.390 and the third-order conductivity, σ3, also scales with Jc as with y≈1.175. Through the discussion of the nonlinearity within the framework of two theoretical models, the nonlinear random resistor network (NLRRN) and the dynamic random resistor network (DRRN), it is indicated that neither of these two models can fully explain our experimental results. Taking into account the microscopic structures and conduction processes of the composites, it is likely that a combination of these two models explain the nonlinear characteristics better.  相似文献   

6.
The temperature evolution of the lattice parameters measured from 295 to 125 K exhibits a small instability below Tc≈278 K, indicating ferroelastic properties of Na2TiGeO5. The behavior is related to the specific crystal structure built of polyhedral layers with shared TiO5 pyramids and GeO4 tetrahedra, alternating with layers of Na+ cations. Antiparallel alignment of the short apical titanyl bond in adjacent rows of the polyhedral layer gives rise to spontaneous strain, when a distortion of the TiO5 groups occurs. Single-crystal structures determined at room temperature and 120 K suggest that {1 1 0} domains, developing below Tc, entail a tetragonal-to-orthorhombic symmetry change. The mechanism is attributed to a shortening of the O–O distance between the polyhedral layers, and to minor shifts of the positions of the Ti atoms and the correlated oxygen atoms along the c-axis. The structure distortion, however, is too small to allow any unambiguous determination of the symmetry-breaking effects. The bulk modulus and its pressure derivative have been determined as B0=89(2) GPa and . A pressure-induced phase transformation takes place at Pc≈12.5 GPa, presumably to an orthorhombic structure. The pressure effect on the transition temperature is given by ΔTcP≈1.76 K/GPa.  相似文献   

7.
The current–voltage (IV) characteristics of Au/polyaniline(PANI)/p-Si/Al structures were determined at various temperatures in the range of 90–300 K. The evaluation of the experimental IV data reveals a decrease of the zero-bias barrier height (BH) and an increase of the ideality factor (n) with decreasing temperature. It was shown that the occurrence of a Gaussian distribution of then BHs is responsible for the decrease of the apparent BH, increase of the ideality factor n due to barrier height imhomogeneities that prevail at the interface. A Φb0 versus 1/T plot has been drawn for evidence of the Gaussian distribution of the barrier height, and and σ0 = 0.0943 V for the mean barrier height and zero-bias standard deviation, respectively, have been obtained from this plot. Thus, a modified versus 1/T plot gives and A* as 0.885 eV and A* = 55.80 A/K2 cm2, respectively. Hence, it can be concluded that Au/PANI/p-Si/Al structure has a good rectifying contact and the temperature dependence of IV characteristics of the rectifying contact on p-Si successfully have been explained on the basis of TE mechanism with Gaussian distribution of the barrier heights.  相似文献   

8.
The current–voltage (IV) and capacitance–voltage (CV) characteristics of H-terminated Pb/p-Si/Al contacts fabricated by us have been measured in the temperature range of 77–300 K. The experimental values of the barrier height (BH) Φbo and the ideality factor n for the device range from 0.674 and 1.072 eV (at 300 K) to 0.352 and 2.452 eV (at 77 K), respectively. The ideality factors become larger with lowering temperature while the barrier height decreases. The Φbo(n) plot shows a linear dependence in the temperature range of 77–300 K that can be explained by the barrier inhomogeneity at the metal/semiconductor interface. The extrapolation of the linear Φbo(n) plot to n = 1 has given a homogeneous barrier height of approximately 0.713 eV for the Pb/p-Si(1 0 0) contact. A Φbo versus 1/T plot was drawn to obtain evidence of a Gaussian distribution of the BHs, and values of and σs = 80.5 mV for the mean BH and zero-bias standard deviation have been obtained from this plot, respectively. Then, a modified versus 1/T plot gives and A* as 0.828 eV and 54.89 A/cm2 K2, respectively. Furthermore, an average value of −0.687 meV/K for the temperature coefficient has been obtained, the value of −0.687 meV/K for hydrogen terminated p-type Si differs from those given for p-type Si without hydrogen termination in the literature.  相似文献   

9.
To study a behavior of the thermal conductivity near Tc specific heat and thermal diffusivity of the YBa2Cu3O7−δ high-Tc ceramics were simultaneously measured. Close to Tc = 92.30 K the thermal diffusivity and the thermal conductivity discovered minima and the specific heat – maximum. Quantitative analysis of the influence of thermodynamical fluctuations showed the same power laws with Gaussian exponent equal to 0.5 and existing of crossover from the 3D Gaussian to 3D XY critical behavior in the specific heat and thermal conductivity at the approach to Tc. To explain the minimum in thermal conductivity at Tc we propose a mechanism of scattering of phonons on the superconducting fluctuations.  相似文献   

10.
Epitaxial thin films of the conductive ferromagnetic oxide SrRuO3 were grown on an (0 0 1) SrTiO3 (STO) substrate by using DC sputtering technique. The magnetic and magnetoresistive properties of the films were measured by applying the magnetic field both perpendicular (out-of-plane) and parallel (in-plane) to the film plane and ever maintaining the direction of the applied field perpendicular to that of the transport current. The films grown on an (0 0 1) STO substrate showed identical magnetization properties in two orthogonal crystallographic directions of the substrate, [1 0 0]S and [0 0 1]S (in-plane and out-of-plane geometry), which suggests the presence of a multi domain structure within the plane of the film. For such samples, no anisotropic field (hard axis) along de [0 0 1]s direction, i.e., perpendicular to the film-plane could be detected. Nevertheless, a distinguishable temperature dependent out-of-plane anisotropic magnetoresistance (MR) along with strong temperature dependent low field hysteretic MR(H) behavior was detected for the studied films. A negative MR ratio MR(T)=[ρ0H=9 T; T)−ρ( μ0H=0 T; T)]/ρ( μ0H=0 T; T) on the order of a few percent, with maximums of 6% and 4% (right at the Curie temperature, TC 160 K) was calculated for an in-plane and out-of plane measuring geometry, respectively. In addition there is an equally strong MR effect at low temperatures, which might be related to the temperature dependence of the magnetocrystalline anisotropy together with a magnetization rotation. Both the MR(T) behavior and the achieved values (except for T<30 K) are similar to those obtained on SrRuO3 films grown on 2° miscut (0 0 1) STO substrates with the current parallel to the field and parallel to the direction, which was identified as the easier axis for magnetization.  相似文献   

11.
The magnetic flux density in the cavity of a sintered tube of Yttrium Barium Copper Oxide (YBCO) is measured as a function of H, the axial magnetic field impressed and removed after zero field cooling (ZFC). We note that, in a short thick-walled hollow cylinder of a weak-linked polycrystalline high-Tc superconductor, the magnetic field in the cavity of the tube, Hz hole, rises above the applied field H when it is initially increasing. Consequently the standard approach to determine the critical current density from an ascending sweep of H alone, or a descending sweep alone cannot be exploited. However the field dependence of the intergranular critical current density Jcm can be reliably obtained from the horizontal traversals of Hz hole vs H. Comparison of the experimental data with model calculations for the horizontal traversals of the hysteresis curves show that the intergranular critical current density in the YBCO tube has a Kim-like field dependence. The magnetization of the grains has a significant influence on the flux density in the cavity of the tube.  相似文献   

12.
Reflectivity spectra of CeIn3 are measured at 7, 30, 50, 100, 150, 200 and 300 K in wild energy regions from 6 meV to 30 eV. Optical conductivity spectra are obtained from a Kramers–Kronig’ relation. A hump in the optical conductivity σ1 is observed at about 500 cm−1 below 100 K, resulting from strong hybridization between conduction electrons and Ce 4f electronic states. The low frequency plasmon indicating the existence of heavy particles is also observed below coherence temperature T*  100 K.  相似文献   

13.
The 63Cu NMR Knight shift K and spin-lattice relaxation rate 1/T1 have been measured to study the thiospinel superconductor Cu1.5Rh1.5S4 from a microscopic viewpoint. K is negative and has a weak dependence on temperature, and the hyperfine coupling constant Hhfd is estimated to be −52.4 kOe/μB. 1/T1 is proportional to the temperature in the normal state. In the superconducting state, 1/T1 takes a coherence peak just below Tc, and decreases exponentially well below Tc, from whose temperature dependence the superconducting energy gap has been proved to be close to 2Δ = 3.52kBTc given by the BCS theory.  相似文献   

14.
The electronic and magnetic phase transitions of Pr0.5−xLaxSr0.5MnO3 with x=0.10 and 0.15 were investigated. The M(T) and ρ(T) curves for these samples clearly show transitions from antiferromagnetic insulator to ferromagnetic semiconductor, ferromagnetic metal and finally to paramagnetic semiconductor as the temperature is increased from 5 to 300 K. Especially, two obvious protrudent peaks in the magnetoresistance curves MR(T) for these samples were clearly observed in the relative low magnetic field, 1 T. One peak appears at around the antiferromagnet-ferromagnet transition temperature TN (150 K) with MR≈−23%, another occurs at around the ferromagnet-paramagnet transition temperature TC(275 K ) with MR≈−8.2%. In addition, when the magnetic field was increased, the temperature corresponding to the MR peak at TN shifts to lower temperature while the temperature corresponding to the MR peak at TC is fixed.  相似文献   

15.
The temperature dependence of the extended X-ray absorption fine structure (EXAFS) is studied in the high Tc superconductors, YBa2Cu3O7−δ. The measurements were done at the Cu K-edge for samples of two orthorhombic phases (Tc≈90 K and ≈58 K, respectively) and a nonsuperconducting tetragonal phase. Interatomic distances and mean square relative displacements σ2 for Cu-O bonds are determined by the least squares refinement. The results indicate that values of σ2 increase near Tc for both the orthorhombic samples. It is concluded that this anomalous behavior related to Tc is caused by an anomalous vibration of oxygen atoms in the Ba-O layer. Changes in the Cu-O distances from 300 to 20 K are not found.  相似文献   

16.
The thermal conductivity and thermopower are reported for a hole doped Eu1.5Ce0.5RuSr2Cu2O10+δ sample that has been annealed at 1100 K under an oxygen pressure of 54 atm. At Tc=45 K superconductivity and weak ferromagnetism coexist (Tm=180 K). Weak features in the thermopower, S(T), and thermal conductivity, κ(T), are observed both at Tm and at T*=140 K. The thermopower begins to decrease sharply toward zero at Tc, and there is an extremely sharp increase of about 30% in the thermal conductivity at Tc. This “first order” transition may be related to the sudden appearance of a spontaneous vortex phase at Tc. A small shoulder is observed in κ(T) in the temperature range T=5–13 K.  相似文献   

17.
YBa2Cu3O7−δ (YBCO) films with high critical current density (Jc) were successfully fabricated on nickel tapes buffered with epitaxial NiO. NiO was prepared on the textured nickel tape by the surface-oxidation epitaxy (SOE) method. We have reported so far a critical temperature (Tc) of 87 K and Jc=4–6×104 A/cm2 (77 K, 0 T) for the YBCO films on NiO/Ni tapes. To enhance the superconducting properties of the YBCO films on the SOE-grown NiO, depositions of thin oxide cap layers such as YSZ, CeO2, and MgO on NiO were investigated. These oxide cap layers were epitaxially grown on NiO and provided the template for the epitaxial growth of YBCO films. Substantially improved data of Tc=88 K and Jc=3×105 A/cm2 (77 K, 0 T) and 1×104 A/cm2 (77 K, Hc, 4 T) were obtained for YBCO film on NiO, by using a MgO cap layer with a thickness of 50 nm. The method described in this paper is a simple way to produce long YBCO tape conductors with high-Jc values.  相似文献   

18.
We have investigated the magnetic behavior of cobalt ferrite nanoparticles with a mean diameter of 7.2 nm. AC susceptibility of colloidal cobalt ferrite nanoparticles was measured as a function of temperature T from 2 to 300 K under zero external DC field for frequencies ranging from f=10 to 10,000 Hz. A prominent peak appears in both χ′ and χ″ as a function of T. The peak temperature T2 of χ″ depends on f following the Vogel–Fulcher law. The particles show superparamagnetic behavior at room temperature, with transition to a blocked state at TBm94 K in ZFC and 119 K in AC susceptibility measurements, respectively, which depends on the applied field. The saturation magnetization and the coercivity measured at 4.2 K are 27.3 emu/g and 14.7 kOe, respectively. The particle size distribution was determined by fitting a magnetization curve obtained at 295 K assuming a log-normal size distribution. The interparticle interactions are found to influence the energy barriers yielding an enhancement of the estimated magnetic anisotropy, K=6×106 erg/cm3. Mössbauer spectra obtained at higher temperatures show a gradual collapse of the magnetic hyperfine splitting typical for superparamagnetic relaxation. At 4.2 K, the Mössbauer spectrum was fitted with two magnetic subspectra with internal fields Hint of 490, 470 and 515 kOe, corresponding to Fe3+ ions in A and B sites.  相似文献   

19.
Magnetic measurements of various types have played an essential role in establishing the novel normal state characteristics of high transition temperature (Tc) superconductors with Tc > 23 K. Among these materials, the highest Tc's ( 125 K) are exhibited by the layered cuprates. In this paper, the normal state magnetic susceptibilities of the cuprates are reviewed and interpreted in the context of magnetic neutron scattering and other magnetic measurements, using the La2−xMxCuO4-type and YBa2Cu3O6+x-type materials as prototypical examples. The evolution of the magnetism upon doping the insulating antiferromagnetic “parent” compounds with x = 0 to form the high temperature superconductors is described. A recurrent property which differentiates these materials from conventional superconductors is the existence of strong antiferromagnetic correlations in the metallic state on the same sublattice of the structure in which the itinerant carriers reside.  相似文献   

20.
63Cu, 17O and 205Tl NMR have been performed in the high-Tc superconductor Tl2Ba2Ca2Cu3O10 whose Tc(max) is 127 K. The hole densities at Cu and oxygen sites in the CuO2 plane have been extracted from the nuclear quadrupole frequency νQ. The striking feature is that the Cu holes are significantly transferred to oxygen site due to strong hybridization between Cu and oxygen. From an analysis of T1 and T2G, it has been found that the spectral weight of the spin fluctuation is transferred to higher energy compared to YBa2Cu3O7, while the magnetic correlation length ξ does not differ much. Thus, it is suggested that the higher Tc is due to higher characteristic energy of spin fluctuations, i.e. the superconductivity is spin fluctuation mediated. The superconducting properties are consistently explained by a d-wave superconductivity model with a finite density of states (DOS) at the Fermi level. We show that the disorder of the Ca/TlO layer caused by the partial inter-substitution of Tl and Ca is responsible for the potential scattering to produce such a DOS. It is found that if such a potential scattering were absent, Tc would go up to 132 K which is quite close to the record Tc realized in the Hg based compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号