首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new lyotropic liquid crystal, potassium laurate, decylammonium chloride and water, which has two uniaxial phases and a biaxial nematic phase, is reported. A surface of the phase diagram and X-ray diffraction studies are presented. The chemical stability of this mixture is compared with the potassium laurate/decanol/water mixture. Optical measurements of the birefringence and X-ray studies indicate that this new mixture is more stable than the usual mixtures with alcohol.  相似文献   

2.
A new lyotropic liquid crystal, potassium laurate, decylammonium chloride and water, which has two uniaxial phases and a biaxial nematic phase, is reported. A surface of the phase diagram and X-ray diffraction studies are presented. The chemical stability of this mixture is compared with the potassium laurate/decanol/water mixture. Optical measurements of the birefringence and X-ray studies indicate that this new mixture is more stable than the usual mixtures with alcohol.  相似文献   

3.
NMR spectroscopy and optical microscopy have been used to study phase transitions and structure in nematic lyotropic mesophases formed by potassium laurate, decylammonium hydrochloride and water. The different mesophases obtained in a well-defined composition range have been characterized, by deuterium NMR, following the evolution of the D2O spectra as a function of temperature and of the orientation of the samples with respect to the magnetic field. Wide ranges of biaxiality have been found and the asymmetry parameter of the averaged electrical field gradient tensor on the deuterium of the D2O molecule has been determined. The presence of the different mesophases has always been confirmed by observing oriented samples under the polarizing optical microscope.  相似文献   

4.
The nematic phase of the CsPFO/water system, when held in a cylindrical glass tube, spontaneously forms a detailed 'cellular' texture with an axial S = +1 disclination. This texture is the lyotropic discotic analogue of that previously found for a calamitic thermotropic system.  相似文献   

5.
6.
Abstract

A sample of a CsPFO/water mixture in the nematic discotic phase is used to investigate liquid crystal anchoring properties. A splay distortion is introduced in the uniform nematic alignment and orientation and relaxation processes are observed. From experimental values of the orientation and relaxation times we determine the rotational viscosity and the splay elastic constant for this mixture.  相似文献   

7.
We have studied the low temperature phase diagram and water activities of the ammonium sulfate/maleic acid/water system using differential scanning calorimetry and infrared spectroscopy of thin films. Using the results from our experiments, we have mapped the solid/liquid ternary phase diagram, determined the water activities based on the freezing point depression, and determined the ice/maleic acid phase boundary as well as the ternary eutectic composition and temperature. We also compare our results to the predictions of the extended AIM aerosol thermodynamics model and find good agreement for the ice melting points in the ice primary phase field of this system; however significant differences were found with respect to phase boundaries, maleic acid dissolution, and ammonium sulfate dissolution.  相似文献   

8.
We investigate the behavior of a binary surfactant solution (AOT/water) as it is progressively concentrated in microfluidic evaporators. We observe in time a succession of phase transitions from a dilute solution up to a dense state, which eventually grows and invades the microchannels. Analyzing these observations, we show that, with a few experiments and a limited amount of material, our microdevices permit a semiquantitative screening of the equilibrium phase diagram as well as a few kinetic observations.  相似文献   

9.
We have studied the low temperature phase diagram and water activities of the ammonium sulfate/malic acid/water system using differential scanning calorimetry (DSC) and infrared spectroscopy (IR) of thin films. Using the results from our experiments we have mapped the ice primary phase region of the solid/liquid ternary phase diagram. In our DSC and IR experiments we observe ice nucleation in all samples and ammonium sulfate in some samples, which were cooled to 183 K. However, we only observed malic acid nucleation in IR experiments, where the sample was in contact with ZnSe windows. We also compare our results to the predictions of the Extended AIM Aerosol Thermodynamics Model (E-AIM) and find good agreement for the ice melting points in the ice primary phase field of this system; however, the E-AIM has difficulty predicting malic acid crystallization.  相似文献   

10.
A phenomenological theory is presented to describe the nematic to lamellar phase transition in lyotropic liquid crystals. The problem of the first or second order transition is explored by means of the variation of the surfactant concentration. The possibility of the tricritical point at the nematic to lamellar phase transition is discussed in a phenomenological way. The influence of the electrolyte on this transition is also discussed by varying the coupling between the electrolyte concentration variables and the order parameters. The theoretical prediction is found to be in good qualitative agreement with experimental results.  相似文献   

11.
The liquid membrane oscillation of a novel water (aqueous tetradecyl trimethyl ammoniumbromide, TTAB and alcohol solution)/oil (picric acid in chloroform solution)/water (aqueous glucose solution) system was investigated. By using homemade device, the curves of various liquid membranes oscillation with different concentration of TTAB and picric acid, types of alcohol and other organic solvents at different temperature were measured. The results show that the water (aqueous 7 mmol/L of TTAB and 0.5 mol/L of n-propanol solution)/oil (0.5 mmol/L of picric acid in chloroform solution)/water (aqueous glucose solution) system performed sustained and stable oscillation at 30 ℃. And the novel system can recognise added amino acid.  相似文献   

12.
13.
The phase diagram of water has been calculated from the TIP4PQ/2005 model, an empirical rigid non-polarisable model. The path integral Monte Carlo technique was used, permitting the incorporation of nuclear quantum effects. The coexistence lines were traced out using the Gibbs-Duhem integration method, once having calculated the free energies of the liquid and solid phases in the quantum limit, which were obtained via thermodynamic integration from the classical value by scaling the mass of the water molecule. The resulting phase diagram is qualitatively correct, being displaced to lower temperatures by 15-20 K. It is found that the influence of nuclear quantum effects is correlated to the tetrahedral order parameter.  相似文献   

14.
It is shown that dipole-dipole dispersion forces are not sufficient to account for ordering in the nematic mesophase.  相似文献   

15.
16.
17.
The phase diagram of the system N-methylmorpholine-N-oxide(NMMO)/H2O/cellulose has been measured at 80 °C by establishing a solubility map (observation of the mixtures under the microscope), by the analysis of coexisting phases and determining the critical point. These experiments manifest a continuous reduction of the two phase area existing for the subsystem H2O/cellulose upon the addition of NMMO, where a weight fraction of NMMO in the mixed solvent exceeding 75 wt% is required for Solucell 400 to reach the critical composition. The critical cellulose concentration is only 0.34 wt%, i.e., more than an order of magnitude lower than for the solutions of typical vinyl polymers in mixed solvents. All experimental observations can be well modeled on the basis of composition dependent binary interaction parameters by means of recently established mixing rules. For the subsystems H2O/cellulose and NMMO/water the corresponding data are known from independent earlier measurements. The adjustment of two parameters to the ternary phase diagram was required to obtain this information for NMMO/cellulose, the third binary subsystem.  相似文献   

18.
Experimental results for the temperature dependence of density at normal pressure for two compositions of sodium lauryl sulphate/decanol/water solutions, exhibiting either a calamitic or a discotic lyotropic nematic phase at room temperature, are presented. Within the limits of experimental precision (±1 ×10-5 g cm-3), the systems show no jump in density at the nematic to isotropic phase transition. Over the studied temperature range, the mean thermal expansion coefficients were also evaluated.  相似文献   

19.
The alignment in a magnetic field of two similar azo dyes in binary nematic lyotropic phases (C7F15CO2NH4 and C8F17CO2NH4 in D2O) has been studied. The order 5 parameter for the dyes was determined by measuring quadrupolar splittings (deuterium N.M.R.), the anisotropy of the electric conductivity and dichroism. The order parameter of the dye fixed in the disc-like perfluoro micelle with positive diamagnetic anisotropy was determined as a function of magnetic field strength, surfactant concentration, temperature and chain length. In addition the time constants for orientation and disorientation were determined.  相似文献   

20.
The ternary phase diagram of the amphiphilic triblock copolymer PEO-PPO-PEO ((EO)(20)(PO)(70)(EO)(20) commercialized under the generic name P123), water, and ethanol has been investigated at constant temperature (T = 23 degrees C) by small-angle X-ray scattering (SAXS). The microstructure resulting from the self-assembly of the PEO-PPO-PEO block copolymer varies from micelles in solution to various types of liquid crystalline phases such as cubic, 3D hexagonal close packed spheres (HCPS), 2D hexagonal, and lamellar when the concentration of the polymer is increased. In the isotropic liquid phase, the micellar structural parameters are obtained as a function of the water-ethanol ratio and block copolymer concentration by fitting the scattering data to a model involving core-shell form factor and a hard sphere structure factor of interaction. The micellar core, the aggregation number, and the hard sphere interaction radius decrease when increasing the ethanol/water ratio in the mixed solvent. We show that the fraction of ethanol present in the core is responsible for the swelling of the PPO blocks. In the different liquid crystalline phases, structural parameters such as lattice spacing, interfacial area of PEO block, and aggregation number are also evaluated. In addition to classical phases such as lamellar, 2D hexagonal, and liquid isotropic phases, we have observed a two-phase region in which cubic Fm3m and P6(3)mmc (hexagonally close packing of spheres (HCPS)) phases coexist. This appears at 30% (w/w) of P123 in pure water and with 5% (w/w) of ethanol. At 10% (w/w) ethanol, only the HCPS phase remains present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号