共查询到20条相似文献,搜索用时 0 毫秒
1.
Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) and poly(propylene carbonate) (PPC) were blended by solvent casting method into films at various weight ratios in order to obtain materials with properties more suitable for blood vessel tissue engineering than pure PHBHHx alone. FTIR and XRD analysis indicated the crystal structure of PHBHHx was not altered but the crystallinity was reduced by the interfusion of PPC. Mechanical properties of the films were improved significantly by blending with PPC. A lower elastic modulus and a higher elongation at break were obtained with the increase of PPC content. Wettability, fibronectin adsorption and adhesion of rabbit aorta smooth muscle cells (RaSMCs) on blend films were similar to or better than that on PHBHHx film. All these results showed promises of PHBHHx/PPC blended materials as scaffold material for blood vessel tissue engineering. 相似文献
2.
Shuwen Peng 《European Polymer Journal》2003,39(7):1475-1480
Isothermal crystallization behavior of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was investigated by means of differential scanning calorimetry and polarized optical microscopy (POM). The Avrami analysis can be used successfully to describe the isothermal crystallization kinetics of PHBV, which indicates that the Avrami exponent n=3 is good for all the temperatures investigated. The spherulitic growth rate, G, was determined by POM. The result shows that the G has a maximum value at about 353 K. Using the equilibrium melting temperature (448 K) determined by the Flory equation for melting point depression together with U∗=1500 cal mol−1, T∞=30 K and Tg=278 K, the nucleation parameter Kg was determined, which was found to be 3.14 ± 0.07 × 105 (K2), lower than that for pure PHB. The surface-free energy σ=2.55×10−2 J m−2 and σe=2.70±0.06×10−2 J m−2 were estimated and the work of chain-folding (q=12.5±0.2 kJ mol−1) was derived from σe, and found to be lower than that for PHB. This implies that the chains of PHBV are more flexible than that of PHB. 相似文献
3.
Jin Wang Liuchun ZhengChuncheng Li Wenxiang ZhuDong Zhang Yaonan XiaoGuohu Guan 《Polymer Testing》2012,31(1):39-45
Fully biodegradable poly(butylene succinate) (PBS) and poly(butylene carbonate) (PBC) blends were prepared by melt blending. Miscibility, thermal properties, crystallization behavior and mechanical properties of PBS/PBC blends were investigated by scanning electron microscopy (SEM), phase contrast optical microscopy (PCOM), differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD) and mechanical properties tests. The SEM and PCOM results indicated that PBS was immiscible with PBC. The WAXD results showed that the crystal structures of both PBS and PBC were not changed by blending and the two components crystallized separately in the blends. The isothermal crystallization data showed that the crystallization rate of PBS increased with the increase of PBC content in the blends. The impact strength of PBS was improved significantly by blending with PBC. When the PBC content was 40%, the impact strength of PBS was increased by nearly 9 times. 相似文献
4.
Yuan Gao 《European Polymer Journal》2006,42(4):764-775
Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) and poly(dl-lactide) (PDLLA) were blended at different ratios in an attempt to form a biomaterial with suitable properties for nerve regeneration. FT-IR and X-ray analysis showed that the blending of the PDLLA component did not alter the helical structure of PHBHHx, but did lead to a reduction of crystallinity. Differential scanning calorimetry (DSC) analysis indicated that the two polymers were immiscible in the melted state. The mechanical properties of certain composite films were more desirable than those of unblended PDLLA films. Blends consisting of PDLLA and PHBHHx at ratios of 2:1 and 1:2 exhibited a lower elastic modulus and a higher elongation at break compared to unblended PDLLA. ELISA results indicated that the amount of fibronectin adsorbed on composite films was much higher than the amount adsorbed on PDLLA film. The results of this study demonstrate the feasibility of using PDLLA/PHBHHx blended materials for biomedical applications. 相似文献
5.
With the objective of developing new biodegradable materials, the miscibility and the crystallinity of blends of poly(3-hydroxybutyrate), P(3HB), and poly(3-hydroxybutyrate-co-3-hydroxyvalerate), P(3HB-co-3HV), have been studied. P(3HB) (300 kg mol−1)/P(3HB-co-3HV)–10% 3HV (340 kg mol−1) blends were prepared by casting in a wide range of proportions, and characterized by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR). The experimental values for the glass transition temperatures (Tg) are in good agreement with the values provided by the Fox equation, showing that the blends are miscible. It was observed that the Tg and the melting temperature (Tm) decreases with the increase in the P(3HB-co-3HV)–10% 3HV content, while the crystallization temperature (Tc) increases. FT-IR analyses confirmed the decrease on the crystallinity of P(3HB)/P(3HB-co-3HV)–10% 3HV blends with higher copolymer contents. Bands related to the crystallinity were changed, due to the copolymer content that produced miscible and less crystalline blends. 相似文献
6.
Blends of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(butylene succinate) (PBS) with different PHBV/PBS weight ratios (100/0, 75/25, 50/50 and 0/100) were elaborated by melt mixing. The morphological investigation of the different samples, in comparison with that of neat PHBV and neat PBS, pointed out that PHBV/PBS blends form a biphasic system over the whole composition range. Low amount of compatibilizing agent (5 wt%), obtained by grafting maleic anhydride (MA) onto PHBV, i.e. PHBV-g-MA, was used for improving the miscibility between the two components of the blend. The incorporation of a fibrous filler as the sepiolite, easily dispersible in a polymer matrix, was also investigated. The morphology of the different blends as well as the evolution of their material properties were discussed in terms of the sepiolite and compatibilizing agent contents. The dispersion of PBS in the PHBV matrix markedly became finer with incorporation of sepiolite and PHBV-g-MA, due to enhanced interactions between the components. This paper highlighted a synergistic effect induced by the presence of both compatibilizer and sepiolite leading to an improved miscibility of the two blend components. The resulting properties were correlated with the morphology observed for the different blends. 相似文献
7.
The effects of crystallization temperature and blend ratio on the polymorphic crystal structures of poly(butylene adipate)(PBA) in poly(butylene succinate)(PBS)/poly(butylene adipate)(PBS/PBA) blends were studied by means of differential scanning calorimetry(DSC), wide-angle X-ray diffraction(XRD) and atomic force microscopy(AFM). It was revealed that the polymorphism of PBA can be regulated by the blend ratio even in a non-isothermal crystallization process. The results demonstrate that high temperature favors flat-on α crystals, while low temperature contributes to edge-on β crystals. It was also found that the effect of blend ratio on the crystallization mechanism of PBA is well coincident with that of the crystallization temperature. The increment of PBS content in the PBS/PBA blend gives rise to more β-form crystals of PBA. For those PBS/PBA blends with low PBA content, the interlamellar phase segregation of PBA makes its molecular chains so difficult to diffuse from one isolated microdomain to another that high crystallization temperature and sufficiently long crystallization time will be required if the PBA α-type crystals are targeted. 相似文献
8.
Graphene oxide (GO) was incorporated into poly(butylene succinate) (PBS) via a solution coagulation method to fabricate PBS/GO nanocomposites. Scanning electron microscope and transmission electron microscope observations indicated that GO with exfoliated lamella dispersed in PBS uniformly and showed good interfacial adhesion with the PBS matrix. Differential scanning calorimetry analysis suggested that the crystallization ability of PBS first increased and then decreased with increase in GO content, due to the competitive nucleating effect and confined space effect with addition of exfoliated GO. Isothermal crystallization kinetics investigation showed that the overall crystallization rate of PBS first increased and then decreased with increasing GO content while the crystallization mechanism remained unchanged. Polarized optical microscopy analysis indicated that GO worked as an effective nucleating agent for PBS. X-ray diffraction characterization suggested that incorporation of GO did not change the crystal structure of PBS. Both tensile testing and dynamic mechanical analysis witnessed the reinforcement in mechanical performance of PBS by incorporation of GO. 相似文献
9.
Biodegradable poly(butylene succinate) (PBS) and layered double hydroxide (LDH) nanocomposites were prepared via melt blending in a twin-screw extruder. The morphology and dispersion of LDH nanoparticles within PBS matrix were characterized by transmission electron microscopy (TEM), which showed that LDH nanoparticles were found to be well distributed at the nanometer level. The nonisothermal crystallization behavior of nanocomposites was extensively studied using differential scanning calorimetry (DSC) technique at various cooling rates. The crystallization rate of PBS was accelerated by the addition of LDH due to its heterogeneous nucleation effect; however, the crystallization mechanism and crystal structure of PBS remained almost unchanged. In kinetics analysis of nonisothermal crystallization, the Ozawa approach failed to describe the crystallization behavior of PBS/LDH nanocomposites, whereas both the modified Avrami model and the Mo method well represented the crystallization behavior of nanocomposites. The effective activation energy was estimated as a function of the relative degree of crystallinity using the isoconversional analysis. The subsequent melting behavior of PBS and PBS/LDH nanocomposites was observed to be dependent on the cooling rate. The POM showed that the small and less perfect crystals were formed in nanocomposites. 相似文献
10.
11.
The crystallization behavior of poly(butylene succinate)(PBS) nanocomposites with a wide range of contents of clays was revealed. It was of interest to find that the crystallization rate of PBS was accelerated obviously at relatively low contents of clays; while a retarded crystallization kinetics and a decreased crystallinity of PBS were found in the nanocomposites with higher clay contents. Two interplaying effects existed in the nanocomposites, i.e., a suppression effect of clays on nucleation and a templating effect of clays on crystal growth, were clarified to contribute to this intriguing crystallization behavior. 相似文献
12.
Katarzyna Lewandowska 《European Polymer Journal》2005,41(1):55-64
Poly(vinyl alcohol) (PVA) (polymer A) and poly(N-vinylpyrrolidone) (PVP) (polymer B) are known to form a thermodynamically miscible pair. In the present study the conclusion on miscibility of PVA/PVP solid blends, confirmed qualitatively (DMTA, FTIR) and quantitatively (DSC, χAB = − 0.69 at 503 K) is compared with the miscibility investigations of PVA/PVP solution blends by the technique of dilute solution viscometry. The miscibility of the ternary (polymer A/ polymer B/ solvent) system is estimated on the basis of experimental and ideal values of the viscosity parameters k, b and [η]. It is found that the conclusions on miscibility or nonmiscibility drawn from viscosity measurements in dilute solution blends depend: (i) on the applied extrapolation method used for the determination of the viscosity interaction parameters, (ii) on the assumed definition of the ideal values and (iii) on the thermodynamic quality of the solvent, which in the case of PVA depends on its degree of hydrolysis. Hence, viscometric investigations of dilute PVA/PVP solution blends have revealed that viscometry, widely used in the literature for estimation of polymer-polymer miscibility can not be recommended as a sole method to presume the miscibility of a polymer pair. 相似文献
13.
Influence of transesterification reactions on the miscibility and thermal properties of poly(butylene/diethylene succinate) copolymers 总被引:1,自引:0,他引:1
Poly(butylene/diethylene succinate) block copolymers (PBSPDGS), prepared by reactive blending of the parent homopolymers (PBS and PDGS) in the presence of Ti(OBu)4, were analyzed by 1H-NMR, TGA and DSC, in order to investigate the effects of the transesterification reactions on the molecular structure and thermal properties. 1H-NMR analysis evidenced the formation of copolymers whose degree of randomness increases with the mixing time. The thermal analysis of the melt-quenched samples showed that the melting peak, due to the crystalline phase of PBS, tends to disappear with increasing mixing time and therefore with decreasing the block length in the copolymers. As concern miscibility, a single homogeneous amorphous phase always occurred, independently on block length. Nevertheless, a phase separation, due to the tendency of the PBS blocks to crystallize, was evidenced in the copolymers with long butylene succinate sequences. The results obtained indicated that the block size had a fundamental role in determining the crystallizability and, therefore, phase behavior of the block copolymers. 相似文献
14.
Intermolecular hydrogen bonds, miscibility, crystallization and thermal stability of the blends of biodegradable poly(3-hydroxybutyrate) (PHB), poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-3HHx)] with 4,4-dihydroxydiphenylpropane (DOH2) were investigated by FTIR, 13C solid state NMR, DSC, WAXD and TGA. Intermolecular hydrogen bonds were found in both blend systems, which resulted from the carbonyl groups in the amorphous phase of both polyesters and the hydroxyl groups of DOH2. The intermolecular interaction between P(3HB-3HHx) and DOH2 is weaker than that between PHB and DOH2 owing to the steric hindrance of longer 3HHx side chains. Because of the effect of the hydrogen bonds, the chain mobility of both PHB and P(3HB-3HHx) components was limited after blending with DOH2 molecules. Single glass transition temperature depending on the composition was observed in all blends, indicating that those blends were miscible in the melt. The addition of DOH2 suppressed the crystallization of PHB and P(3HB-3HHx) components. Moreover, the crystallinity of PHB and P(3HB-3HHx) components also decreased with increasing DOH2 content in the blends. However, the crystal structures of the crystallizable components were not affected. The existence of DOH2 favors to thermal decomposition of PHB and P(3HB-3HHx) components, resulting in the decrease in thermal decomposition temperature. 相似文献
15.
Pongpipat Krutphun 《European Polymer Journal》2005,41(7):1561-1568
Poly(trimethylene terephthalate) (PTT)/poly(ethylene naphthalate) (PEN) blends were miscible in the amorphous state in all of the blend compositions studied, as evidenced by a single, composition-dependent glass transition temperature (Tg) observed for each blend composition. The variation in the Tg value with the blend composition was well predicted by the Gordon-Taylor equation, with the fitting parameter being 0.57. The cold-crystallization peak temperature decreased with increasing PTT content, while the melt-crystallization peak temperature decreased with increasing amount of the minor component. The subsequent melting behavior after both cold- and melt-crystallization exhibited melting point depression, in which the observed melting temperatures decreased with increasing amount of the minor component. During melt-crystallization, both components in the blends crystallized concurrently just to form their own crystals. The blend with 60% w/w of PTT exhibited the lowest total apparent degree of crystallinity. 相似文献
16.
Binary blends of poly(l-lactide) (PLLA) and poly(butylene terephthalate) (PBT) containing PLLA as major component were prepared by melt mixing. The two polymers are immiscible, but display compatibility, probably due to the establishment of interactions between the functional groups of the two polyesters upon melt mixing. Electron microscopy analysis revealed that in the blends containing up to 20% of poly(butylene terephthalate), PBT particles are finely dispersed within the PLLA matrix, with a good adhesion between the phases. The PLLA/PBT 60/40 blend presents a co-continuous multi-level morphology, where PLLA domains, containing dispersed PBT units, are embedded in a PBT matrix. The varied morphology affects the mechanical properties of the material, as the 60/40 blend displays a largely enhanced resistance to elongation, compared to the blends with lower PBT content. 相似文献
17.
Marie Vandesteene Nicolas Jacquel René Saint-Loup Nadège Boucard Christian Carrot Alain Rousseau Françoise Fenouillot 《高分子科学》2016,34(7):873-888
A series of branched poly(butylene succinate) (PBS) were synthesized with several branching agents namely trimethylol propane (TMP), malic acid, trimesic acid, citric acid and glycerol propoxylate. The structure of the branched polymers was analyzed by SEC and 1H-NMR. The effect of branching agent structure on crystallization was also investigated and played a significant role. Isothermal studies showed that glycerol propoxylate could act as a nucleating agent. By contrast high content of TMP disturbed the regularity of the chain and hindered the crystallization of PBS. From the non-isothermal kinetic study, it was found that glycerol propoxylate increased noticeably the crystallization rate due to the flexible structure of the branching agent. A secondary nucleation was observed with glycerol propoxylate attributed to the crystallization of amorphous fraction included between crystallites formed at the primary crystallization. Chain topology was obtained through rheological investigations and the synthesized polymers showed a typical behavior of a mixture of linear and randomly branched PBS. The incorporation of branches improved the processability of PBS for film blowing application and the modulus and the stress at break of the resulting film were significantly increased. 相似文献
18.
The miscibility of poly(propylene succinate)/poly(propylene adipate) blends was investigated by means of DSC, WAXS and NMR techniques. Poly(propylene succinate) and poly(propylene adipate) were found to be completely immiscible in as blended-state. The miscibility changes upon extended mixing at elevated temperature: for enough long mixing time, the original two phases gradually merged into a single one because of transesterification reactions. The NMR analysis showed that the transesterifications led to block copolymers whose average sequence length decreased as the mixing time is increased at a fixed temperature. Upon very long mixing time (150 min), all PPS and PPA chains are fully transformed into a random copolymer characterized by a single amorphous phase. 相似文献
19.
The early stage of polymer crystallization may be viewed as physical gelation process,i.e.,the phase transition of polymer from liquid to solid.Determination of the gel point is of significance in polymer processing.In this work,the gelation behavior of poly(butylene succinate)(PBS) at different temperatures has been investigated by rheological method.It was found that during the isothermal crystallization process of PBS,both the storage modulus(G′) and the loss modulus(G″) increase with time,and the rheological response of the system varies from viscous-dominated(G′G″),meaning the phase transition from liquid to solid.The physical gel point was determined by the intersection point of loss tangent curves measured under different frequencies.The gel time(t_c) for PBS was found to increase with increasing crystallization temperature.The relative crystallinity of PBS at the gel point is very low(2.5%-8.5%) and increases with increasing the crystallization temperature.The low crystallinity of PBS at the gel point suggests that only a few junctions are necessary to form a spanning network,indicating that the network is"loosely"connected,in another word,the critical gel is soft.Due to the elevated crystallinity at gel point under higher crystallization temperature,the gel strength S_g increases, while the relaxation exponent n decreases with increasing the crystallization temperature.These experimental results suggest that rheological method is an effective tool for verifying the gel point of biodegradable semi-crystalline polymers. 相似文献
20.
Multiple melting behavior of poly(butylene succinate) 总被引:2,自引:0,他引:2
Xiaohong Wang 《European Polymer Journal》2007,43(8):3163-3170
The multiple melting behavior of poly(butylenes succinate) (PBS) isothermally crystallized from the melt was investigated using differential scanning calorimetry (DSC), temperature modulated DSC (MDSC) and polarized optical microscopy. PBS exhibits at most four melting endotherms (denoted as Tm1, Tm2, Tm3, and Tm4 from high to low temperatures) and a crystallization exotherm (denoted as Tre) in the DSC heating trace. Multiple melting endotherms were observed even at high heating rates. The origins of each endothermal and exothermal peak were discussed in detail. It is suggested that: (i) the crystallization exothermic peak, Tre, relates to the recrystallization of the melt of the crystallites with lower thermal stability; (ii) the Tm1 is ascribed to the melting of crystallites formed through recrystallization; (iii) two crystal populations with different thermal stability are responsible for the Tm2 and Tm3; (iv) the Tm4, which is the annealing peak, represents the transition of the rigid amorphous fraction (RAF) from solid-like RAF into liquid-like amorphous fraction. 相似文献