首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
《中国化学快报》2020,31(6):1674-1679
Recently,ZnO-based gas sensors have been successfully fabricated and widely studied for their excellent sensitivity and selectivity,especially in CO detection.However,detailed explorations of their mechanisms are rather limited.Herein,aiming at clarifying the sensing mechanism,we carried out density functional theory(DFT) calculations to track down the CO adsorption and oxidation on the ZnO(101 0) and(1120) surfaces.The calculated results show that the lattice O of ZnO(1010) is more reactive than that of ZnO(1120) for CO oxidation.From the calculated energetics and structures,the main reaction product on both surfaces can be determined to be CO_2 rather than carbonate.Moreover,the surface conductivity changes during the adsorption and reaction processes of CO were also studied.For both ZnO(1010) and(1120),the conductivity would increase upon CO adsorption and decrease following CO oxidation,in consistence with the reported experimental results.This work can help understand the origins of ZnO-based sensors' performances and the development of novel gas sensors with higher sensitivity and selectivity.  相似文献   

2.
The adsorptions of nitrogen atoms on Ru(0001), (1010) low index surfaces and (1120), (1121) stepped surfaces were investigated by the five-parameter Morse potential(5-MP) method in details. Calculated results demonstrate that N atoms show a tendency to be adsorbed at threefold sites. No subsurface state was found for N atoms on Ru(1010) surface. There exist 6 stable adsorption sites for N atoms on Ru(1121) stepped surface which can be classified into 3 types: the on-surface adsorption state, the facet adsor...  相似文献   

3.
To gain a better understanding of the influence of ligand-surface interactions on nanocrystalline growth, periodic density functional theory calculations were employed in the study of the binding of organic ligands on the relaxed nonpolar (1120) and polar Se terminated (0001) surfaces and the relaxed and vacancy and adatom reconstructed Cd terminated (0001) surface. We examined chemisorption properties of phosphine, amine, phosphine oxide, carboxylic acid, and phosphinic acid model ligands, including preferred binding sites and geometries, vibrational frequencies, and binding energetics, and compared findings to intrinsic growth via addition of CdSe molecules or Cd and Se atoms. Our results indicate that binding of the ligands is preferred in the electron-poor 1-fold sites on all surfaces, with secondary coordination of the acidic ligands through the hydroxyl hydrogen to the electron-rich surface sites. In general ligand adsorption directly obstructs binding sites for growth species on the (1120) surface and only indirectly on the two polar surfaces. The order of binding affinities on the (1120) and (0001) surfaces is PH(3) < OPH(3) approximately HCOOH < NH(3) < OPH(2)OH and that on the (0001) surface is OPH(3) approximately HCOOH < OPH(2)OH < NH(3) < PH(3). Our findings corroborate the experimental observation that incorporation of the nonbulky phosphinic acid-type ligands with high affinity and high selectivity for both the (1120) and (0001) surfaces strongly enhances unidirectional growth on the (0001) surface, while incorporation of either bulky ligands or ligands with moderate affinity does not. Higher affinity of all traditionally used ligands for the (1120) surface compared to the (0001) surface also suggests that new ligands should be engineered to achieve the synthesis of novel shapes that require preferential growth on the (1120) surface.  相似文献   

4.
Periodic density functional theory (DFT) calculations using plane waves have been performed to systematically investigate the adsorption and relative stability of ammonia and its dehydrogenated species on Pt(111) and Pt(100) surfaces. Different adsorption geometries and positions have been studied, and in each case, the equilibrium configuration has been determined by relaxation of the system. The vibrational spectra of the various ammonia fragments have been computed, and band assignments have been compared in detail with available experimental data. The adsorption of NH3 (on top) and NH2 (bridge) is more favorable on Pt(100) than on Pt(111), while similar adsorption energies were computed for NH (hollow) and N (hollow) on both surfaces. The remarkably lower adsorption energy of NH2 over Pt(111) as compared with Pt(100) (the difference being approximately 0.7 eV) can be related to different geometric and electronic factors associated with this particular intermediate. Accordingly, the type of platinum surface determines the most stable NH(x) fragment: Pt(100) has more affinity for NH2 species, whereas NH species are preferred over Pt(111).  相似文献   

5.
Combining B3PW hybrid exchange-correlation functional within the density functional theory (DFT) and a supercell model, we calculated from the first principles the electronic structure of both ideal PbZrO(3) (001) surface (with ZrO(2)- and PbO-terminations) and a neutral oxygen vacancy also called the F center. The atomic relaxation and electronic density redistributions are discussed. Thermodynamic analysis of pure surfaces indicates that ZrO(2) termination is energetically more favorable than PbO-termination. The O vacancy on the ZrO(2)-surface attracts approximately 0.3 e (0.7 e in the bulk PbZrO(3)), while the remaining electron density from the missing O(2-) ion is localized mostly on atoms nearest to a vacancy. The calculated defect formation energy is smaller than in the bulk which should lead to the vacancy segregation to the surface. Unlike Ti-based perovskites, the vacancy-induced (deep) energy level lies in PbZrO(3) in the middle of the band gap.  相似文献   

6.
Details of the chemical mechanism underlying the growth of colloidal semiconductor nanocrystals remain poorly understood. To provide insight into the subject, we have preformed a comprehensive study of the polar (0001) and (0001) and nonpolar (1120) wurtzite CdSe surfaces that are exposed during crystal growth using first-principles density functional theory (DFT-GGA) calculations. Stabilization of these surfaces by relaxation and reconstruction was considered. Two particular reconstructions of the polar surfaces were examined: vacancy formation on a 2 x 2 unit cell and addition of Se and Cd atoms on the (0001) and (0001) surfaces, respectively. Calculation results indicate that the (1120) is the most stable surface when compared to the two polar surfaces. Furthermore, reconstructions of the (0001) surface are energetically favored when compared to reconstructions of the (0001) facet. Adsorption of Cd and Se atoms and the CdSe molecule on the three relaxed surfaces and two reconstructed (0001) surfaces were also investigated. Several binding sites were considered to determine the most stable binding geometries and energetics. Atomic species preferentially bind in either 2-fold or 3-fold sites, while the CdSe molecule binds parallel to the surface on all of the considered surfaces. Vibrational frequencies of the adspecies were calculated for the most stable binding configurations and were included in the zero point energy correction. Diffusion barriers for the atomic and molecular species were estimated where possible to be between 0.2 and 0.4 eV on the three relaxed surfaces. Thermochemistry of the CdSe molecule binding and dissociation was also investigated. On all considered surfaces, dissociation is preferred to desorption with dissociation only exothermic on the (0001) surface. Comparison of the three relaxed and two reconstructed surfaces indicates that CdSe molecule binding and dissociation is thermodynamically favored on the (0001) surface. This implies that under a reaction-controlled regime, the rate of homoepitaxy would be faster on the (0001) Se terminated surface than on the (0001) and (1120) surfaces, making the (0001) surface of a nanocrystal the primary direction of growth.  相似文献   

7.
H吸附诱发ZnO(10-10)表面的金属化   总被引:2,自引:0,他引:2  
采用基于广义梯度近似的投影缀加平面波赝势和周期性边界条件的超晶胞模型, 用第一原理方法计算并分析了H在ZnO(10-10)面上的吸附能、态密度和能带结构. 结果表明: 1) H单原子吸附时, H在ZnO(10-10)面上的吸附(用ZnO(10-10)-H表示)只形成OH原子团, 没有ZnH出现; 面上剩余的Zn悬挂键导致此面显示出很强的金属性. DOS和能带分析显示导带(CB)底的Zn 4s态得到电子, 向下移动导致价带导带在禁带中出现交叠, 呈现明显金属化. 2) 双H在ZnO(10-10)面上的吸附用ZnO(10-10)-2H表示, 在ZnO(10-10)-2H吸附面上, 2H分别吸附在O、Zn上, 饱和了面上的两个悬挂键, DOS和能带分析显示ZnO(10-10)-2H吸附面与清洁ZnO(10-10)面大致相同, 均为绝缘面.  相似文献   

8.
Tight-binding electronic band structures and Madelung potentials were calculated for La(2)NiO(4), La(3)Ni(2)O(7), and La(4)Ni(3)O(10) to examine why a metal-to-metal transition occurs in the nickelate Ln(4)Ni(3)O(10) (Ln = La, Nd, Pr). La(4)Ni(3)O(10) and La(3)Ni(2)O(7) are each found to have two hidden one-dimensional (1D) Fermi surfaces, which suggests that both compounds should possess a charge density wave instability. Factors leading to hidden 1D Fermi surfaces in the e(g) block bands of the nickelates were discussed.  相似文献   

9.
The electronic structures and bonding properties of the (110) polar terminations of cubic PbTiO3 were examined by the first-principles calculations at the generalized gradient approximation level. Two stoichiometric (PbTiO and O2) and three nonstoichiometric(TiO, Pb, and O) terminations were considered in this study. With the aid of the calculated electron density differences, atomic charges, band structures, and densities of states, the charge redistributions and electronic properties were evaluated in detail. Furthermore, based on the calculated results of the cleavage energies, relaxation energies, and surface energies of the investigated terminations, the charge compensation by the modification of the surface stoichiometry and the fillings of surface states were thermodynamically evaluated.  相似文献   

10.
采用基于密度泛函理论(DFT)框架下广义梯度近似(GGA)平面波超软赝势(PP-PW)方法, 计算了闪锌矿型MTe (M=Zn/Mg)的几何结构、弹性性质、电子结构和光学性质. 同时采用杂化密度泛函调准了带隙. 结果表明, 立方相ZnTe和MgTe均为直接带隙半导体材料. 所得晶格参数、弹性常数及体模量与实验数据基本吻合. 由弹性常数推导出ZnTe、MgTe的德拜温度分别为758、585 K. 研究了MTe的复介电函数、折射率、反射率和能量损失系数等光学性质, 并基于电子能带结构和态密度对光学性质进行了解释.  相似文献   

11.
Based on the density functional theory (DFT), the lattice constants and atomic positions of BiOX (X = F, Cl, Br, I) species have been optimized, and the electronic and optical properties of the relaxed species have been calculated, with Bi 5d states considered or not. Relaxation generally results in the shrinkage in a and the expansion of c. Relaxed BiOCl, BiOBr, and BiOI present indirect band gaps, whereas BiOF exhibits a direct or somewhat indirect band‐gap feature corresponding to the relaxation and calculation with the Bi 5d states or not. The bottom of the conduction band is quite flat for relaxed BiOI, and apparently flat in BiOBr, and shows observable flatness in BiOCl as well when considering the Bi 5d states. The top of the valence band is rather even as well for some species. The obtained maximum gaps for relaxed BiOF, BiOCl, BiOBr, and BiOI are 3.34, 2.92, 2.65, and 1.75 eV, respectively. The density peak of X np states in the valence band shifts toward the valence band maximum with the increasing X atomic number. The bandwidths, atomic charges, bond orders, and orbital density have also been investigated along with some optical properties. © 2008 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

12.
We have performed ab initio linear combination of atomic orbitals-density functional theory calculations on biperiodic supercells to model the electronic and geometrical involvements of Ti intercalated atom in either octahedral or tetrahedral sites of the (001) TiS2 surfaces. For each type of defect, both the relaxed atomic structure and the electronic properties of the defect states were carefully analyzed. For the titanium atom in the van der Waals gap, the partial filling of the conduction band is in agreement with the metallic behavior reported by experimental studies and the last filled states in the bottom of the conduction band--mainly developed on titanium 3d orbitals--permit us to explain the dark defects observed on the scanning tunneling microscopy image of the (001) TiS2 surfaces. On the other hand, the intercalated titanium atom in the tetrahedral site which is just below the top sulfur atom plane governs the electronic density detected by the tip. It permits us to explain the triangular defect with a clear maximum of intensity in its center and dark sides.  相似文献   

13.
First-principles calculations based on density functional theory were carried out to investigate the structural and electronic properties of Pt substitution-doped boron nitride (BN) nanotubes. The electronic and structural properties were studied for substituted Pt in the boron and the nitrogen sites of the (BN) nanotube. The band gap significantly diminishes to 2.095 eV for Pt doping at the B site while the band gap diminishes to 2.231 eV for Pt doping at the N site. The band density increases in both the valence band and the conduction band after doping. The effects of the hardness and softness group 17 (halogen elements) were calculated by density functional theory (DFT).  相似文献   

14.
We have performed electronic structure calculations to study the evolution of the stacking fault energy at (111) surfaces of metals. We first apply an sp–d tight-binding model and then increase the accuracy on the electronic structure by using density functional theory (DFT) calculations. We show in this way the relative importance of spd hybridization both in the formation of defects at the surface of metals and in reconstruction phenomena as a function of band filling especially at the end of transition metal series. Comparing our results with atomistic simulations it is concluded that although atomistic calculations are powerful tools to investigate relaxation mechanisms at surfaces, a higher degree of accuracy on electronic structure is necessary to quantify the energy of some defects at surfaces like stacking faults. In particular long range interactions associated to less localized sp electrons are playing a rather important role in reconstruction phenomena for metals like platinum and gold. These results are backed up by DFT calculations applied to iridium, platinum and gold (111) surfaces.  相似文献   

15.
采用密度泛函理论(DFT)平面波赝势方法计算了N/F掺杂和N-F双掺杂锐钛矿相TiO2(101)表面的电子结构.由于DFT方法存在对过渡金属氧化物带隙能的计算结果总是与实际值严重偏离的缺陷,本文也采用DFT+U(Hubbard系数)方法对模型的电子结构进行了计算.DFT的计算结果表明N掺杂后,N2p轨道与O 2p和Ti 3d价带轨道的混合会导致TiO2带隙能的降低,而F掺杂以及氧空位的引入对材料的电子结构没有明显的影响.DFT+U的计算却给出截然不间的结果,N掺杂并没有导致带隙能的降低,而只是在带隙中引入一个孤立的杂质能级,反而F掺杂以及氧空位的引入带来明显的带隙能降低.DFT+U的计算结果与一些实验测量结果能够较好地符合.  相似文献   

16.
Biotin is a promising candidate for functionalization of semiconducting surfaces, given its strong, unmatched affinity to specific proteins such as streptavidin and avidin. Using density functional theory, we have carried out a theoretical investigation of the structural and electronic properties of biotin chemisorbed on a biocompatible substrate; in particular we have considered the clean and hydroxylated Si-SiC(001) surfaces. Our calculations show that, upon chemisorption, biotin retains the electronic properties responsible for its strong affinity to proteins. While the electronic states of the hydroxylated surface undergo negligible changes in the presence of the molecule, those of the clean surface are considerably affected.  相似文献   

17.
Vanadium oxide clusters, (V2O5)n, have been predicted to possess interesting polyhedral cage structures, which may serve as ideal molecular models for oxide surfaces and catalysts. Here we examine the electronic properties of these oxide clusters via anion photoelectron spectroscopy for (V2O5)n(-) (n = 2-4), as well as for the 4d/5d species, Nb4O10(-) and Ta4O10(-). Well-resolved photoelectron spectra have been obtained at 193 and 157 nm and used to compare with density functional calculations. Very high electron affinities and large HOMO-LUMO gaps are observed for all the (V2O5)n clusters. The HOMO-LUMO gaps of (V2O5)n, all exceeding that of the band gap of the bulk oxide, are found to increase with cluster size from n = 2-4. For the M4O10 clusters, we find that the Nb/Ta species yield similar spectra, both possessing lower electron affinities and larger HOMO-LUMO gaps relative to V4O10. The structures of the anionic and neutral clusters are optimized; the calculated electron binding energies and excitation spectra for the global minimum cage structures are in good agreement with the experiment. Evidence is also observed for the predicted trend of electron delocalization versus localization in the (V2O5)n(-) clusters. Further insights are provided pertaining to the potential chemical reactivities of the oxide clusters and properties of the bulk oxides.  相似文献   

18.
The structural, optical, and electronic properties of two rare-earth molybdenum borate compounds, LnMoBO(6) (Ln = La, Ce), have been investigated by means of single-crystal X-ray diffraction, elemental analyses, and spectral measurements, as well as calculations of energy band structures, density of states, and optical response functions by the density functional method. The title compounds, which crystallize in monoclinic space group P2(1)/c, possess a similar network of interconnected [Ce(2)(MoO(4))(2)](2+) chains and [BO(2)](-) wavy chains. Novel 1D molybdenum oxide chains are contained in their three-dimensional (3D) networks. The calculated results of crystal energy band structure by the density functional theory (DFT) method show that the solid-state compound LaMoBO(6) is a semiconductor with indirect band gaps.  相似文献   

19.
By means of density functional theory the electronic structure of the MgB2 superconductor was characterized and compared with that of the related iso-structural systems: AlB2, ZrB2, NbB2, and TaB2. Using the full potential-linearized augmented plane wave (FP-LAPW) method and the generalized gradient approximation, the electronic density distribution, density of states, and band structures were obtained for these compounds. The electrical conductivity, which cannot be easily measured in the c-direction, was calculated, in the relaxation time approximation using band structure results. It was found that the two-dimensional (2D) crystal structure character of these metallic diborides is also reflected in the electronic charge distribution. This 2D pattern is not reproduced in the electrical conductivity as it is, for instance, in the superconductor high Tc cuprates. The calculations indicate a bulk, yet anisotropic, conductivity for all these compounds.  相似文献   

20.
采用密度泛函理论(DFT)平面波赝势方法计算了N/F掺杂和N-F双掺杂锐钛矿相TiO2(101)表面的电子结构. 由于DFT方法存在对过渡金属氧化物带隙能的计算结果总是与实际值严重偏离的缺陷, 本文也采用DFT+U(Hubbard 系数)方法对模型的电子结构进行了计算. DFT的计算结果表明N掺杂后, N 2p轨道与O 2p和Ti 3d价带轨道的混合会导致TiO2带隙能的降低, 而F掺杂以及氧空位的引入对材料的电子结构没有明显的影响. DFT+U的计算却给出截然不同的结果, N掺杂并没有导致带隙能的降低, 而只是在带隙中引入一个孤立的杂质能级, 反而F掺杂以及氧空位的引入带来明显的带隙能降低. DFT+U的计算结果与一些实验测量结果能够较好地符合.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号