首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Monolayers of di-6A,6B-deoxy-6-(4-pyridylmethyl)amino-gamma-cyclodextrin (gamma-CD-(py)2) have been formed on polycrystalline platinum electrodes and investigated using electrochemical and surface-enhanced Raman spectroscopy (SERS). The behavior of self-assembled monolayers of (gamma-CD-(py)2) alone, (gamma-CD-(py)2) backfilled with 1-nonanethiol, and 1-nonanethiol are reported. The potential dependence of the capacitance indicates that the film capacitance is higher for the backfilled CD layers than for 1-nonanethiol layers, most likely due to ion flux through the CD cavity. SERS spectra of the backfilled layer exhibit features associated with both pyridine-functionalized CD and alkane moieties. Investigations using [Fe(CN)6]4- as a solution-phase probe indicate that the backfilled CD-alkane thiol layer exhibits enhanced blocking properties compared to gamma-CD-(py)2 films alone. Complete blocking was achieved by a combination of backfilling and insertion of a high-affinity guest 1-adamantylamine into the cavity. Significantly, an electroactive guest with high affinity for gamma-CD, [Co(biptpy)2]2+, does not exhibit a redox response at the gamma-CD-(py)2 layer but molecular recognition is turned on by backfilling the CD layer with 1-nonanethiol molecules. This switching on of the electrochemical activity suggests that the CD hosts are initially inaccessible but reorientate upon backfilling, exposing the CD opening to solution and permitting a supramolecular host-guest complex to form. The binding of [Co(biptpy)2]2+ to gamma-CD in the backfilled monolayer depends on the bulk concentration of guest and is modeled by the Langmuir isotherm, yielding an association constant for the Co2+ state of 1.45 +/- 0.46 x 105 M-1 and a limiting surface coverage 1.49 +/- 0.25 x 10-11 mol cm-2. The surface coverage of the divalent state is higher than the trivalent state, reflecting the dynamic nature of the inclusion.  相似文献   

2.
The rates of electron tunneling through monolayers and bilayers of alkanethiols self-assembled in a potentiostatically controlled Hg-Hg junction are reported. An alkanethiolate monolayer is formed in situ on one or both Hg drops via oxidative adsorption at the controlled potential. Subsequently, the Hg drops are brought into contact using micromanipulators. The junction formation is instantly followed by the flow of a steady-state tunneling current between the two electrodes. A plot of the logarithm of the tunneling current density vs the total number of carbon atoms in each junction yields identical tunneling coefficients, beta = 1.06 +/- 0.04/-CH(2)- and beta = 1.02 +/- 0.07/-CH(2)-, for monolayers and bilayers of alkanethiols, respectively. Careful examination of the tunneling data indicates that the solvent and ions are ejected from the junction area. The tunneling current recorded for a bilayer of 1-octanethiol or 1-nonanethiol is ca. 2-fold larger than a corresponding tunneling current recorded for monolayers of 1-hexadecanethiol or 1-octadecanethiol, respectively. This result is explained in terms of weak electronic coupling across the noncovalent molecule/electrode interface.  相似文献   

3.
Mallon CT  Forster RJ  Keyes TE 《The Analyst》2011,136(23):5051-5057
The dissociation of a cobalt bisdiphenylterpyridine, [Co(biptpy)(2)](2+), guest at mixed (γ-CD-(py)(2))-alkanethiol layers (where γ-CD-(py)(2) is di-6(A), 6(B)- deoxy-6-(4-pyridylmethyl)amino- γ-cyclodextrin) formed on platinum electrodes is reported. Cyclic voltammetry (CV) shows reversible one-electron surface confined waves consistent with the Co(2/3+) couple bound at the interface. The quantity of [Co(biptpy)(2)](3+) reduced is found to be dependent on the scan rate employed, with greater amounts at higher scan rates. This behavior is in contrast to the CD guest ferrocene, which upon oxidation to the ferrocenium ion shows little charge associated with reduction even at elevated scan rates. Chronocoulometry was conducted to systematically vary the time spent oxidizing [Co(biptpy)(2)](2+) and to measure the resulting charge associated with the reduction of [Co(biptpy)(2)](3+). It is determined experimentally that as the pulse width increases, i.e. greater time spent in the oxidizing region, the amount of charge needed to reduce [Co(biptpy)(2)](3+) decreases dramatically. This decrease, along with the CV data, suggests strongly that the [Co(biptpy)(2)](3+) dissociates from the cavity. Significantly, this dissociation of the interfacial host-guest complex occurs on a much longer timescale (the order of seconds) compared to the oxidation of [Co(biptpy)(2)](2+) to [Co(biptpy)(2)](3+), which has been measured using high speed chronoamperometry to occur with a rate contant, k(0), of approximately 10(3) s(-1). The comparison of the timescale for dissociation of the interfacial complex and for electron transfer signifies that the electron transfer step occurs before dissociation, i.e. dissociation via an EC mechanism. The dissociation mechanism of [Co(biptpy)(2)](3+) is contrasted with that of the ferrocene/ferrocenium couple.  相似文献   

4.
A metal-organic pillared bilayer open framework having 3D channels, [Ni(2)(C(26)H(52)N(10))](3)[BTC](4).6C(5)H(5)N.36H(2)O (BOF-1, 1), has been assembled from bismacrocyclic nickel(II) complex [Ni(2)(C(26)H(52)N(10))(Cl)(4)].H(2)O and sodium 1,3,5-benzenetricarboxylate (Na(3)BTC). The channels are occupied by pyridine and water guest molecules. When the single crystal of 1 was dried in air and then heated at 75 degrees C for 1.5 h, respectively, [Ni(2)(C(26)H(52)N(10))](3)[BTC](4).30H(2)O (1') and [Ni(2)(C(26)H(52)N(10))](3)[BTC](4).4H(2)O (2) resulted with retention of the single crystallinity. The X-ray structures reveal spongelike dynamic behavior of the bilayer framework that reduces the interlayer distance in response to the amount of guest molecules. Solid 2 differentiates various alcohols. When 1 was immersed in pyridine and benzene, guest molecules were exchanged with retention of the single-crystal nature to give rise to [Ni(2)(C(26)H(52)N(10))](3)[BTC](4).20pyridine.6H(2)O (3) and [Ni(2)(C(26)H(52)N(10))](3)[BTC](4).14benzene.19H(2)O (4), respectively. Furthermore, crystal 1 reacted with I(2) via single-crystal-to-single-crystal transformation to produce [Ni(2)(C(26)H(52)N(10))](3)[C(9)H(3)O(6)](4)(I(3))(4).nI(2).17H(2)O (5) that consists of positively charged framework incorporating nickel(III) and nickel(II) ions and the channels including I(3)(-) and I(2).  相似文献   

5.
Electron tunneling spectroscopies have been performed on tunnel junctions incorporating mercaptohexadecanoic acid (MHA) between gold and surface-oxidized aluminum electrodes. Low-temperature superconducting conductance spectroscopy provides direct evidence for elastic tunneling across the junctions. At room temperature the electron transport of these junctions exhibits a high sensitivity to ambient humidity; the resistance of these devices drops by more than 50% when they are placed into a dry atmosphere or vacuum and recovers after they are returned to ambient air. By comparing these results to those obtained for similar junctions incorporating different molecular monolayers, it is determined that the interaction of water molecules with the AlO(x)/carboxylate interface is the origin of the observed behavior. The tunneling spectra and the current-voltage characteristics indicate significant modifications of the barrier height of the AlO(x) upon MHA binding and in the hydration of the molecular interface.  相似文献   

6.
The interaction of thrombocyte vesicles with the surface of metal electrodes, i.e., mercury, gold and gold electrodes modified with self assembled monolayers (SAM), was studied with the help of chronoamperometry, atomic force microscopy, and quartz crystal microbalance measurements. The experimental results show that the interaction of the thrombocyte vesicles with the surface of the electrodes depends on the hydrophobicity of the latter: whereas on very hydrophobic surfaces (mercury and gold functionalized with SAM) the thrombocyte vesicles disintegrate and form a monolayer of lipids, on the less hydrophobic gold surface a bilayer is formed. The chronoamperometric measurements indicate the possibility of future applications to probe membrane properties of thrombocytes.  相似文献   

7.
We measure electronic conductance through single conjugated molecules bonded to Au metal electrodes with direct Au-C covalent bonds using the scanning tunneling microscope based break-junction technique. We start with molecules terminated with trimethyltin end groups that cleave off in situ, resulting in formation of a direct covalent σ bond between the carbon backbone and the gold metal electrodes. The molecular carbon backbone used in this study consist of a conjugated π system that has one terminal methylene group on each end, which bonds to the electrodes, achieving large electronic coupling of the electrodes to the π system. The junctions formed with the prototypical example of 1,4-dimethylenebenzene show a conductance approaching one conductance quantum (G(0) = 2e(2)/h). Junctions formed with methylene-terminated oligophenyls with two to four phenyl units show a 100-fold increase in conductance compared with junctions formed with amine-linked oligophenyls. The conduction mechanism for these longer oligophenyls is tunneling, as they exhibit an exponential dependence of conductance on oligomer length. In addition, density functional theory based calculations for the Au-xylylene-Au junction show near-resonant transmission, with a crossover to tunneling for the longer oligomers.  相似文献   

8.
Wang J  Bonakdar M 《Talanta》1988,35(4):277-280
Carbon-paste electrodes modified with crown-ethers were constructed by mixing the crown-ethers into a graphite powder/Nujol oil matrix. The electrodes so formed were able to bind mercuric ions chemically, and gave greater voltammetric response to mercury than that of ordinary carbon-paste electrodes. The response was characterized with respect to paste composition, crown-ether, preconcentration period, mercury concentration, reproducibility, possible interferences, and other variables. Best results were obtained with 18-crown-6 and an acetate buffer (pH 4.0). The electrode gave good linearity for 1 x 10(-5)-6 x 10(-6)M mercury, a detection limit of 2 x 10(-6)M, and a relative standard deviation of 11%. The investigation may lead to a new class of modified (complexing) electrodes, with different patterns of reactivity.  相似文献   

9.
Cao ML  Hao HG  Zhang WX  Ye BH 《Inorganic chemistry》2008,47(18):8126-8133
Two new complexes [Co(H2O)6 Co8(L1)12]X6 x n H2O (X = NO3(-), n = 12 (1); X = HCO3-, n = 24, (2); HL1 = 4,6-bis(2-pyridyl)-1,3,5-triazin-2-ol) have been synthesized and characterized by single-crystal X-ray diffraction. A [Co(H2O)6](2+) ion is encapsuled in the central cavity of the cubelike nanocage [Co(H2O)6 Co8(L1)12](6+) cation, assembled by eight cobalt ions at the corners and twelve bis-bidentate ligands L1 as the edges, via the formation of 12-fold strong hydrogen bonds between the six coordinated water molecules and the oxygen atoms of twelve L1 as a guest. Complex 1 crystallizes in a centrosymmetric space group P1, while 2 is in a very high symmetric space group Im3. In 2, a planar [(HCO3)2](2-) dimer motif R2(2)(8) synthon plus six lattice water molecules constitute a planar supramolecular synthon R8(8)(20), which acts as a four connector, generating a 3D hydrogen-bonded NbO net with cubelike host cavities of approximately 20 A diameter. Interestingly, the cubelike nanocage [Co(H2O)6 Co8(L1)12](6+) cations fill in the cavities as templates. The magnetic properties of 1 have also been studied in the temperature range of 2-300 K, and its magnetic susceptibility obeys the Curie-Weiss law, showing antiferromagnetic coupling.  相似文献   

10.
Four porous crystalline coordination polymers with two-dimensional frameworks of a double-edged axe-shaped motif, [[Co(NCS)(2)(3-pia)(2)] x 2 EtOH.11 H(2)O](n) (1 a), [[Co(NCS)(2)(3-pia)(2)] x 4 Me(2)CO](n) (3 a), [[Co(NCS)(2)(3-pia)(2)] x 4T HF](n) (3 b) and [[Co(NCS)(2)(3-pna)(2)](n)] (5), have been synthesized by the reaction of cobalt(II) thiocyanate with N-(3-pyridyl)isonicotinamide (3-pia) or N-(3-pyridyl)nicotinamide (3-pna). X-ray crystallographic characterization reveals that adjacent layers are stacked such that channels are created, except in 5. The channels form a hydrogen-bonded interior for guest molecules; in practice, 1 a contains ethanol and water molecules as guests in the channels with hydrogen bonds, whereas 3 b (3 a) contains tetrahydrofuran (acetone) molecules. In 1 a, the "double-edged axe-shaped" motifs in adjacent sheets are not located over the top of each other, while the motifs in 3 b stack so perfectly as to overlap each other in an edge-to-edge fashion. This subtle change in the three-dimensional framework is associated with the template effect of the guests. Compound 5 has no guest molecules and, therefore, the amide groups in one sheet are used for hydrogen-bonding links with adjacent sheets. Removal of the guest molecules from 1 a and 3 b (3 a) causes a structural conversion accompanied by a color change. Pink 1 a cannot retain its original framework and changes into a blue amorphous compound. On the other hand, the framework of pink 3 b (3 a) is transformed to a new crystalline framework of violet 4. Interestingly, 4 reverts to the original pink crystals of 3 b (3 a) when it is exposed to THF (or acetone) vapor. Spectroscopic measurements (visible, EPR, and IR) provide a clue to the crystal-to-crystal transformation; on removal of the guests, the amide groups are used to form the beta sheet-type hydrogen bonding between the sheets, and thus the framework withstands significant stress on removal of guest molecules. This mechanism is attributed to the arrangement of the adjacent sheets so suited in regularity that the beta sheet-type structure forms efficiently. The apohost 4 does not adsorb cyclopentane, showing a guest selectivity that, in addition to size, hydrogen-bonding capability is required for the guest molecules. The obtained compound is categorized as a member of a new generation of compounds tending towards functional porous coordination polymers.  相似文献   

11.
We demonstrate that the electrical "switching" behavior of single molecules connected between two electrode contacts can be controlled by altering their structure and electrochemical characteristics. The electrical properties of gold|molecule|gold single molecule junctions incorporating HS(CH2)6-X-(CH2)6SH, where X = viologen (4,4'-bipyridinium) or pyrrolotetrathiafulvalene, are determined using a scanning tunneling microscopy based technique. The switching behavior, controlled through a tuneable electrochemical gate, changes from an on-off response (viologen) to an off-on-off response (pyrrolotetrathiafulvalene) on changing the central redox group. In contrast, the electrical properties of junctions incorporating redox-inactive HS(CH2)6-1,4-C6H4-(CH2)6SH do not alter significantly as a function of applied potential.  相似文献   

12.
A Prussian blue (PB) type material containing hexacyanovanadate(III), Mn(II)1.5[V(III)(CN)6].(0.30)MeCN (1), was formed from the reaction of [V(III)(CN)6](3-) with [Mn(NCMe)6](2+) in MeCN. This new material exhibits ferrimagnetic spin- or cluster-glass behavior below a Tc of 12K with observed magnetic hysteresis at 2 K (Hcr = 65 Oe and Mrem = 730 emu.Oe/mol). Reactions of [V(III)(CN)6](3-) with [M(II)(NCMe)6](2+) (M = Fe, Co, Ni) in MeCN lead to either partial (M = Co) or complete (M = Fe, Ni) linkage isomerization, resulting in compounds of Fe(II)(0.5)V(III)[Fe(II)(CN)6].(0.85)MeCN (2), (NEt4)(0.10)Co(II)(1.5- a)V(II)a[Co(III)(CN)6]a [V(III)(CN)6](1-a)(BF4)(0.10).(0.35)MeCN (3), and (NEt4)(0.20)V(III)[Ni(II)(CN)4](1.6).(0.10)MeCN (4) compositions. Compounds 2-4 do not magnetically order as a consequence of diamagnetic cyanometalate anions being present, i.e., [Fe(II)(CN)6](4-), [Co(III)(CN)6](3-), and [Ni(II)(CN)4](2-). Incorporation of [V(III)(CN)6](3-) into PB-type materials is synthetically challenging because of the lability of the cyanovanadate(III) anion.  相似文献   

13.
Zhao J  Xu J  King RB 《Inorganic chemistry》2008,47(20):9314-9320
The six-vertex cobalt carbonyl clusters [Co6C(CO)n](2-) (n = 12, 13, 14, 15, 16) with an interstitial carbon atom have been studied by density functional theory (DFT). These DFT studies indicate that the experimentally known structure of [Co6C(CO)15](2-) consisting of a Co6 trigonal prism with each of its edges bridged by carbonyl groups is a particularly stable structure lying more than 20 kcal/mol below any other [Co6C(CO)15](2-) structure. Addition of a CO group to this [Co6C(CO)15](2-) structure gives the lowest energy [Co6C(CO)16](2-) structure, also a Co6 trigonal prism with one of the vertical edges bridged by two CO groups and the remaining eight edges each bridged by a single CO group. However, this [Co6C(CO)16](2-) structure is thermodynamically unstable with respect to CO loss reverting to the stable trigonal prismatic [Co6C(CO)15](2-). This suggests that 15 carbonyl groups is the maximum that can be attached to a Co6C skeleton in a stable compound. The lowest energy structure of [Co6C(CO)14](2-) has a highly distorted octahedral Co6 skeleton and is thermodynamically unstable with respect to disproportionation to [Co6C(CO)15](2-) and [Co6C(CO)13](2-). The lowest energy [Co6C(CO)13](2-) structure is very similar to a known stable structure with an octahedral Co6 skeleton. The lowest energy [Co6C(CO)12](2-) structure is a relatively symmetrical D3d structure containing a carbon-centered Co6 puckered hexagon in the chair form.  相似文献   

14.
The anodic behaviour of the free macrobicyclic ligand (222) was examined by various electrochemical techniques on mercury and on platinum electrodes. From results on platinum electrode using cyclic voltammetry it appears that the anodic oxidation of (222) proceeds irreversibly at potentials more positive than +0.7 V (aq. SCE), however, its mechanism could not be determined because the anodic signal was not well developed. Under polarographic conditions a reversible anodic diffusion controlled wave at E1/2=+0.08 V (aq. SCE) was observed, corresponding to a complex formation of the ligand (222) with the ions of mercury formed by anodic polarization of mercury electrode. In excess of mercuric cations a cathodic wave at slightly more positive potentals was found.  相似文献   

15.
The electrochemical behavior of arrays of Au nanoparticles assembled on Au electrodes modified by 11-mercaptoundecanoic acid (MUA) and poly-L-lysine (PLYS) was investigated as a function of the particle number density. The self-assembled MUA and PLYS layers formed compact ultrathin films with a low density of defects as examined by scanning tunneling microscopy. The electrostatic adsorption of Au particles of 19 +/- 3 nm on the PLYS layer resulted in randomly distributed arrays in which the particle number density is controlled by the adsorption time. In the absence of the nanoparticles, the dynamics of electron transfer involving the hexacynoferrate redox couple is strongly hindered by the self-assembled film. This effect is primarily associated with a decrease in the electron tunneling probability as the redox couple cannot permeate through the MUA monolayer at the electrode surface. Adsorption of the Au nanoparticles dramatically affects the electron-transfer dynamics even at low particle number density. Cyclic voltammetry and impedance spectroscopy were interpreted in terms of classical models developed for partially blocked surfaces. The analysis shows that the electron transfer across a single particle exhibits the same phenomenological rate constant of electron transfer as for a clean Au surface. The apparent unhindered electron exchange between the nanoparticles and the electrode surface is discussed in terms of established models for electron tunneling across metal-insulator-metal junctions.  相似文献   

16.
A novel approach for the noncovalent functionalization of single‐walled carbon nanotubes with enzymes, using a β‐cyclodextrin‐modified pyrene derivative, mono‐6‐ethylenediamino‐(2‐pyrene carboxamido)‐6‐deoxy‐β‐cyclodextrin (Pyr‐βCD), as a molecular bridge for the construction of a supramolecular assembly between the nanotube surface and an adamantane‐modified enzyme, is reported. The Pyr‐βCD derivative was synthesized and its stacking to SWNT through π–π interactions accomplished. The functionalized nanotubes showed low capacity for the nonspecific adsorption of proteins, but were able to immobilize adamantane‐modified xanthine oxidase via host‐guest associations. This double supramolecular junctions‐based approach was employed to modify a glassy carbon electrode with the enzyme/nanotubes complex for designing a biosensor device toward xanthine. The biosensor showed fast electroanalytical response (10 s), high sensitivity (5.9 mA/M cm2) low detection limit (2 µM) and high stability.  相似文献   

17.
A detailed study of the self-assembly and coverage by 1-nonanethiol of sputtered Au surfaces using molecular resolution atomic force microscopy (AFM) and scanning tunneling microscopy (STM) is presented. The monolayer self-assembles on a smooth Au surface composed predominantly of [111] oriented grains. The domains of the alkanethiol monolayer are observed with sizes typically of 5-25 nm, and multiple molecular domains can exist within one Au grain. STM imaging shows that the (4 x 2) superlattice structure is observed as a (3 x 2) structure when imaged under noncontact AFM conditions. The 1-nonanethiol molecules reside in the threefold hollow sites of the Au[111] lattice and aligned along its [112] lattice vectors. The self-assembled monolayer (SAM) contains many nonuniformities such as pinholes, domain boundaries, and monatomic depressions which are present in the Au surface prior to SAM adsorption. The detailed observations demonstrate limitations to the application of 1-nonanethiol as a resist in atomic nanolithography experiments to feature sizes of approximately 20 nm.  相似文献   

18.
The reaction of fac(S)-[Co(aet)(3)](aet = aminoethanethiolate) with [PdCl(4)](2-) in a 2:1 ratio in water gave an S-bridged Co(III)Pd(II)Co(III) trinuclear complex composed of two mer(S)-[Co(aet)(3)] units, [Pd[Co(aet)(3)](2)](2+)([1](2+)). In [1](2+), each of the two mer(S)-[Co(aet)(3)] units is bound to a square-planar Pd(II) ion through two of three thiolato groups, leaving two non-bridging thiolato groups at the terminal. Of two geometrical forms, syn and anti, possible for [Pd[Co(aet)(3)](2)](2+), which arise from the difference in arrangement of two terminal non-bridging thiolato groups, [1](2+) afforded only the syn form. A similar reaction of fac(S)-[Co(aet)(3)] with [PtCl(4)](2-) or trans-[PtCl(2)(NH(3))(2)] produced an analogous Co(III)Pt(II)Co(III) trinuclear complex, [Pt[Co(aet)(3)](2)](2+)([2](2+)), but both the syn and anti forms were formed for [2](2+). Complexes [1](2+) and syn- and anti-[2](2+), which exclusively exist as a racemic(DeltaDelta/LambdaLambda) form, were successfully optically resolved with use of [Sb(2)(R,R-tartrato)(2)](2-) as the resolving agent. The reaction of syn-[2](2+) with [AuCl[S(CH(2)CH(2)OH)(2)]] led to the formation of an S-bridged Co(III)(4)Pt(II)(2)Au(I)(2) octanuclear metallacycle, [Au(2)[Pt[Co(aet)(3)](2)](2)](6+)([3](6+)), while the corresponding reaction of anti-[2](2+) afforded a different product ([[4](3+)](n)) that is assumed to have a polymeric structure in [[Au[Pt[Co(aet)(3)](2)]](3+)](n).  相似文献   

19.
A methodology for preparing supramolecular hydrogels from guest‐modified cyclodextrins (CDs) based on the host–guest and hydrogen‐bonding interactions of CDs is presented. Four types of modified CDs were synthesized to understand better the gelation mechanism. The 2D ROESY NMR spectrum of β‐CD‐AmTNB (Am=amino, TNB=trinitrobenzene) reveals that the TNB group was included in the β‐CD cavity. Pulsed field gradient NMR (PFG NMR) spectroscopy and AFM show that β‐CD‐AmTNB formed a supramolecular polymer in aqueous solution through head‐to‐tail stacking. Although β‐CD‐AmTNB did not produce a hydrogel due to insufficient growth of supramolecular polymers, β‐CD‐CiAmTNB (Ci=cinnamoyl) formed supramolecular fibrils through host–guest interactions. Hydrogen bonds between the cross‐linked fibrils resulted in the hydrogel, which displayed excellent chemical‐responsive properties. Gel‐to‐sol transitions occurred by adding 1‐adamantane carboxylic acid (AdCA) or urea. 1H NMR and induced circular dichroism (ICD) spectra reveal that AdCA released the guest parts from the CD cavity and that urea acts as a denaturing agent to break the hydrogen bonds between CDs. The hydrogel was also destroyed by adding β‐CD, which acts as the competitive host to reduce the fibrils. Furthermore, the gel changed to a sol by adding methyl orange (MO) as a guest compound, but the gel reappeared upon addition of α‐CD, which is a stronger host for MO.  相似文献   

20.
In the reaction of organic monocationic chlorides or coordinatively saturated metal-ligand complex chlorides with linear, neutral Hg(CN)(2) building blocks, the Lewis-acidic Hg(CN)(2) moieties accept the chloride ligands to form mercury cyanide/chloride double salt anions that in several cases form infinite 1-D and 2-D arrays. Thus, [PPN][Hg(CN)(2)Cl].H(2)O (1), [(n)Bu(4)N][Hg(CN)(2)Cl].0.5 H(2)O (2), and [Ni(terpy)(2)][Hg(CN)(2)Cl](2) (4) contain [Hg(CN)(2)Cl](2)(2-) anionic dimers ([PPN]Cl = bis(triphenylphosphoranylidene)ammonium chloride, [(n)Bu(4)N]Cl = tetrabutylammonium chloride, terpy = 2,2':6',6' '-terpyridine). [Cu(en)(2)][Hg(CN)(2)Cl](2) (5) is composed of alternating 1-D chloride-bridged [Hg(CN)(2)Cl](n)(n-) ladders and cationic columns of [Cu(en)(2)](2+) (en = ethylenediamine). When [Co(en)(3)]Cl(3) is reacted with 3 equiv of Hg(CN)(2), 1-D [[Hg(CN)(2)](2)Cl](n)(n-) ribbons and [Hg(CN)(2)Cl(2)](2-) moieties are formed; both form hydrogen bonds to [Co(en)(3)](3+) cations, yielding [Co(en)(3)][Hg(CN)(2)Cl(2)][[Hg(CN)(2)](2)Cl] (6). In [Co(NH(3))(6)](2)[Hg(CN)(2)](5)Cl(6).2H(2)O (7), [Co(NH(3))(6)](3+) cations and water molecules are sandwiched between chloride-bridged 2-D anionic [[Hg(CN)(2)](5)Cl(6)](n)(6n-) layers, which contain square cavities. The presence (or absence), number, and profile of hydrogen bond donor sites of the transition metal amine ligands were observed to strongly influence the structural motif and dimensionality adopted by the anionic double salt complex anions, while cation shape and cation charge had little effect. (199)Hg chemical shift tensors and (1)J((13)C,(199)Hg) values measured in selected compounds reveal that the NMR properties are dominated by the Hg(CN)(2) moiety, with little influence from the chloride bonding characteristics. delta(iso)((13)CN) values in the isolated dimers are remarkably sensitive to the local geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号