首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
35 GHz electron paramagnetic resonance experiments on a powder sample of the magnetic molecule Mn 19 with a high-spin ground state S = 83/2 are presented. At low temperatures, the data are well described by the simulated spectra for an isolated spin with a zero-field-splitting parameter D = 0.004 cm (-1), which is, in particular, positive. Hence, Mn 19 is not a single-molecule magnet; the previously observed magnetic hysteresis at ultralow temperatures is likely due to intermolecular dipolar interactions.  相似文献   

4.
Ligand modification transforms a polyoxometalate-anchored cubane-type [Mn(III)(3)Mn(IV)O(4)] core into a centrosymmetric [Mn(III)(6)Mn(IV)O(8)] di-cubane cluster, and restores the slow magnetization relaxation characteristics typical for [Mn(4)O(4)] cubane-based single-molecule magnets.  相似文献   

5.
《Polyhedron》2007,26(9-11):1805-1810
The reaction of 1-(2-pyridyl)-3-(p-tolyl)propane-1,3-dione (HL) with [Mn3O(O2CPh)6(H2O)(py)2] in CH2Cl2 affords a mixed-valence Mn3IIMn3III hexanuclear complex [Mn6O2(O2CPh)8L3] (1). Complex 1 contains a [Mn3IIMn3III(μ4-O)2]11+ core, which is a new structural type in the family of Mn6 complexes. Variable temperature magnetic susceptibility and magnetization measurement of complex 1 have been carried out. The magnetic data indicate that complex 1 has a ground state spin value of S = 7/2 with significant magnetoanisotropy as gauged by the D value of −0.46 cm−1. The frequency dependence of the out-of-phase component in alternating current magnetic susceptibilities for complex 1 indicates the slow magnetic relaxation of a superparamagnetic molecule.  相似文献   

6.
The reaction of anhydrous FeCl(3) with 1H-benzotriazole-1-methanol (Bta-CH(2)OH) in MeOH produces the pentanuclear complex [Fe(5)O(2)(OMe)(2)(Bta)(4)(BtaH)(MeOH)(5)Cl(5)], containing a distorted tetrahedron of four Fe ions centred on a fifth. The central Fe is antiferromagnetically coupled to the peripheral Fe ions resulting in an S= 15/2 spin ground state.  相似文献   

7.
In pursuit of a compound with the Kagome structure, formed by a non-Fe(3+) transitional metal ion with a spin of 5/2, we have synthesized an amine-templated Mn(2+) sulfate under solvothermal conditions. This compound with a perfect Kagome structure shows evidence for antiferromagnetic interactions with no long-range order.  相似文献   

8.
9.
10.
The Cu(II) aggregate in [Cu(9)(cpida)(6)(MeOH)(6)].6(MeOH)[H(3)cpida = 2-(carboxyphenyl)iminodiacetic acid] is made up of two weakly ferromagnetically coupled carboxylate-bridged Cu(4) units that are antiferromagnetically linked through a central Cu(II) to give a Cu(9) core with an S= 7/2 spin ground state.  相似文献   

11.
Complex [Ni 5{pyCOpyC(O)(OMe)py} 2(O 2CMe) 4(N 3) 4(MeOH) 2].2MeOH.2.6H 2O ( 1.2MeOH.2.6H 2O) was synthesized by the reaction of Ni(O 2CMe) 2.4H 2O with pyCOpyCOpy and NaN 3 in refluxing MeOH. It crystallizes in the monoclinic C2/ c space group and consists of five Ni (II) atoms in a helical arrangement. Direct current magnetic susceptibility studies reveal ferromagnetic interactions between the Ni (II) ( S = 1) ions, stabilizing an S = 5 ground state. Alternating current susceptibility experiments revealed the existence of out-of-phase signals indicative of slow magnetic relaxation. Analysis of the signals showed that they are composite, suggesting more than one relaxation process, while analysis of their magnitudes suggests not all molecules undergo slow magnetic relaxation. Magnetization field-sweep experiments revealed hysteresis at 1.8 K, and magnetization decay experiments clearly verified the appearance of slow magnetic relaxation at that temperature.  相似文献   

12.
An exclusively chelating ligand bridged high-valent [MnIV3] complex has been synthesized, in which all Mn(IV) ions are ferromagnetically-coupled to exhibit an S(T) = 9/2 spin ground state.  相似文献   

13.
14.
The nature of the iron-iron bond in the mixed-valent diiron tris(diphenylforamidinate) complex Fe(2)(DPhF)(3), which was first reported by Cotton, Murillo et al. (Inorg. Chim. Acta 1994, 219, 7-10), has been examined using additional spectroscopic and theoretical methods. It is shown that the coupling between the two iron centers is strongly ferromagnetic, giving rise to an octet spin ground state. On the basis of M?ssbauer spectroscopy, the two iron centers, formally mixed-valent Fe(II)Fe(I), are completely equivalent with an isomer shift δ = 0.65 mm s(-1) and quadrupole splitting ΔE(Q) = +0.32 mm s(-1). A large, positive zero-field splitting D(7/2) = 8.2 cm(-1) has been determined from magnetic susceptibility measurements. Multiconfigurational quantum studies of the complete molecule Fe(2)(DPhF)(3) found one dominant configuration (σ)(2)(π)(4)(π*)(2)(σ*)(1)(δ)(2)(δ*)(2), which accounts for 73% of the ground-state wave function. By considering all the configurations, an estimated metal-metal bond order of 1.15 has been calculated. Finally, Fe(2)(DPhF)(3) exhibits weak electronic absorptions in the visible and near-infrared regions, which are assigned as d-d transitions from the doubly occupied metal-metal π molecular orbital to half-occupied π*, δ, and δ* orbitals.  相似文献   

15.
Magnetothermal properties of high-spin chloro(2,3,7,8,12,13,17,18-octaethylporphyrinato)manganese(III), chloro(5,10,15,20-tetraphenylporphyrinato) manganese(III), bromo(5,10,15,20-tetraphenylporphyrinato)manganese(III), and (acetato)(5,10,15,20-tetraphenylporphyrinato)manganese(III) complexes as 6% water suspensions were determined by the microcalorimetric method at 298 K in a magnetic field of 0–1.0 T. It was established that when the magnetic field was applied, the temperature of the systems increases, leading to positive values of the magnetocaloric effect: the higher the magnetic field induction, the higher the values. It is shown that the dependences of the heat capacity of the complexes’ solid particles on the magnetic field induction are of an extreme nature with a heat capacity in the area above 0.6 T less than that in the zero field. The regularities of the dynamics of the numerical values of the change in enthalpy and magnetic entropy of the manganese complexes when a growing magnetic field was applied and the regularities of the influence of the acidoligand in pentacoordinated complexes on their magnetothermal properties were considered.  相似文献   

16.
The preparation of a series of multidentate pyridyl-imine ligands, L1-L3, and their reactivity with the Mn(II)/N3- system is described (L1 = [N,N-bis(pyridine-2-yl)benzylidene]ethane-1,2-diamine; L2 = [N,N-bis(pyridine-2-yl)benzylidene]propane-1,3-diamine, and L3 = [N,N-bis(pyridine-2-yl)benzylidene]butane-1,4-diamine). Complexes comprising dinuclear end-on bis(mu-azido)-bridged manganese(II) units of formulas [Mn2(L1)2(N3)4][Mn2(L1)2(N3)2(CH3OH)2](ClO4)2 (two cocrystallized dinuclear units, 1.2), [Mn2(L2)2(N3)2](ClO4)2 (3), and [Mn2(L3)2(N3)2](ClO4)2 (4) have been synthesized. The crystal structures of complexes 1-4 as well as their magnetic properties are presented. Each manganese atom of cocrystallized complexes in compound 1.2 is heptacoordinated, displaying Mn-N-Mn angles, theta, of 102.53(12) and 101.70(12) degrees and Mn...Mn distances of 3.5091(7) and 3.4680(7) A. On the other hand, each manganese center in compounds 3 and 4 is located within an octahedral coordination environment, the complexes displaying theta angles of 104.29(11) and 103.60(18) degrees , respectively, and Mn...Mn vectors of 3.5371(7) and 3.5338(10) A, respectively. Magnetic susceptibility studies revealed the presence of intramolecular ferromagnetic superexchange, yielding an S = 5 spin ground state in all complexes. Fitting of the experimental data led to coupling constants, intermolecular exchange values, and g factors (in the J/zJ'/g format) of 0.77 cm(-1)/0.01 cm(-1)/2.20 (1.2), 2.04 cm(-1)/0.01 cm(-1)/1.99 (3), and 1.75 cm(-1)/-0.05 cm(-1)/2.04 (4), respectively (using H = -2JS1S2 as the convention for the Heisenberg spin-Hamiltonian). These results are consistent with predictions from recent DFT calculations performed on end-on bis(mu-N3-)-bridged Mn(II) dinuclear complexes. A plot of experimental J vs theta, including data from the only preexisting compound of this kind, reveals a linear relationship, which could be the first evidence of a possible magneto-structural correlation between these two parameters.  相似文献   

17.
The dimetallic endohedral heterofullerene (EHF), Gd(2)@C(79)N, was prepared and isolated in a relatively high yield when compared with the earlier reported heterofullerene, Y(2)@C(79)N. Computational (DFT), chemical reactivity, Raman, and electrochemical studies all suggest that the purified Gd(2)@C(79)N, with the heterofullerene cage, (C(79)N)(5-) has comparable stability with other better known isoelectronic metallofullerene (C(80))(6-) cage species (e.g., Gd(3)N@C(80)). These results describe an exceptionally stable paramagnetic molecule with low chemical reactivity with the unpaired electron spin density localized on the internal diatomic gadolinium cluster and not on the heterofullerene cage. EPR studies confirm that the spin state of Gd(2)@C(79)N is characterized by a half-integer spin quantum number of S = 15/2. The spin (S = ?) on the N atom of the fullerene cage and two octet spins (S = 7/2) of two encapsulated gadoliniums are coupled with each other in a ferromagnetic manner with a small zero-field splitting parameter D. Because the central line of Gd(2)@C(79)N is due to the Kramer's doublet with a half-integer spin quantum number of S = 15/2, this relatively sharp line is prominent and the anisotropic nature of the line is weak. Interestingly, in contrast with most Gd(3+) ion environments, the central EPR line (g = 1.978) is observable even at room temperature in a toluene solution. Finally, we report the first EHF derivative, a diethyl bromomalonate monoadduct of Gd(2)@C(79)N, which was prepared and isolated via a modified Bingel-Hirsch reaction.  相似文献   

18.
19.
Complexes K11Na1[As2W18(Mn(H2O))3O66]x27H2O (1) and Na12[As2W18(Co(H2O))3O66]x34H2O (2) have been characterized. 1 crystallizes in the orthorhombic space group Pnma, with a = 30.6484(4) A, b = 14.9946(2) A, and c = 19.17080(10) A (Z = 4), while 2 crystallizes in the monoclinic space group C2/c, with a = 14.124(2) A, b = 23.294(3) A, c = 32.247(3) A, and beta = 98.935(10) degrees (Z = 4). Structures of the anions of 1 and 2 are similar, the divalent metals adopting a square pyramidal environment. K11[As2W18(VO)3O66]x23H2O (3) crystallizes in the orthorhombic space group Pnma, with a = 30.6240(5) A, b = 14.9861(2) A, and c = 19.2651(3) A (Z = 4). The structure has revealed a disorder on two of the three metals linking the [alpha-AsW9O33]9- parts. For these two vanadium atoms, the V=O bonds are directed alternatively toward the inside or the outside of the [alpha-AsW9O33]9- cavity. The remaining vanadium shows a V=O bond always directed toward the outside of the cavity. Titration of VIV by CeIV revealed that 3 is the mixed-valent VIV2VV species. Magnetic measurements are in agreement with this formulation. The high-temperature molar magnetic susceptibility of a powdered sample of 3 clearly confirms the presence of two d1 centers. The two VIV are antiferromagnetically coupled, with J = -2.9 cm-1 and g = 1.93. Crystallographic data do not permit the location of the two VIV to be distinguished from the location of the VV. As expected, the Mn(II) are very weakly antiferromagnetically coupled in compound 1. The complex Na8[Ni(H2O)6]2[As2W18(Ni(H2O))3O66]x20H2O (4) has been synthesized. The anion crystallized with two octahedral [Ni(H2O)6]2+ as counterions. Magnetic data have been fitted assuming that the only exchange-coupled centers are the nickels of the polyanion. 4 exhibits an antiferromagnetic coupling with J = -1.7 cm-1, g = 2.27, and theta = -1.5 K.  相似文献   

20.
A new 1D complex has been prepared and characterized. X-ray single crystal structure confirms that the Mn(II) ions assemble in alternating chains with Mn-Mn distances of 3.8432(13) and 4.4428(14) Å. A 3D network of hydrogen bonds links the chains together. The temperature dependence of the magnetic susceptibility reveals that this compound undergoes a magnetic transition and exhibits an antiferromagnetic interaction in the low-temperature phase with two alternating exchange interactions of −2.32(1) and −5.55(1) cm−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号