首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this work was to evaluate the biochemical features of the white-rot fungi Pycnoporus sanguineus cellulolytic complex and its utilization to sugarcane bagasse hydrolysis. When cultivated under submerged fermentation using corn cobs as carbon source, P. sanguineus produced high FPase, endoglucanase, β-glucosidase, xylanase, mannanase, α-galactosidase, α-arabinofuranosidase, and polygalacturonase activities. Cellulase activities were characterized in relation to pH and temperature. β-Glucosidase and FPase activities were higher at 55 °C, pH 4.5, and endoglucanase activity was higher at 60 °C, in a pH range of 3.5–4.0. All cellulase activities were highly stable at 40 and 50 °C through 48 h of pre-incubation. Crude enzymatic extract from P. sanguineus was applied in a saccharification experiment using acid-treated and alkali-treated sugarcane bagasse as substrate, and the hydrolysis yields were compared to that obtained by a commercial cellulase preparation. Reducing sugar yields of 60.4% and 64.0% were reached when alkali-treated bagasse was hydrolyzed by P. sanguineus extract and commercial cellulase, respectively. Considering the glucose production, it was observed that P. sanguineus extract and commercial cellulase ensured yields of 22.6% and 36.5%, respectively. The saccharification of acid-treated bagasse was lower than that of alkali-treated bagasse regardless of the cellulolytic extract. The present work showed that P. sanguineus has a great potential as an enzyme producer for biomass saccharification.  相似文献   

2.
The aim of this work was to have cellulase activity and hemicellulase activity screenings of endophyte Acremonium species (Acremonium zeae EA0802 and Acremonium sp. EA0810). Both fungi were cultivated in submerged culture (SC) containing l-arabinose, d-xylose, oat spelt xylan, sugarcane bagasse, or corn straw as carbon source. In solid-state fermentation, it was tested as carbon source sugarcane bagasse or corn straw. The highest FPase, endoglucanase, and xylanase activities were produced by Acremonium sp. EA0810 cultivated in SC containing sugarcane bagasse as a carbon source. The highest β-glucosidase activity was produced by Acremonium sp. EA0810 cultivated in SC using d-xylose as carbon source. A. zeae EA0802 has highest α-arabinofuranosidase and α-galactosidase activities in SC using xylan as a carbon source. FPase, endoglucanase, β-glucosidase, and xylanase from Acremonium sp. EA0810 has optimum pH and temperatures of 6.0, 55 °C; 5.0, 70 °C; 4.5, 60 °C; and 6.5, 50 °C, respectively. α-Arabinofuranosidase and α-galactosidase from A. zeae EA0802 has optimum pH and temperatures of 5.0, 60 °C and 4.5, 45 °C, respectively. It was analyzed the application of Acremonium sp. EA0810 to hydrolyze sugarcane bagasse, and it was achieved 63% of conversion into reducing sugar and 42% of conversion into glucose.  相似文献   

3.
The hydrolytic activity of fungal originated β-glucosidase is exploited in several biotechnological processes to increase the rate and extent of saccharification of several cellulosic materials by hydrolyzing the cellobiose which inhibits cellulases. In a previous presentation, we reported the screening and liquid fermentation with Aspergillus niger, strain C-6 for β-glucosidase production at shake flask cultures in a basal culture medium with mineral salts, corn syrup liquor, and different waste lignocellulosic materials as the sole carbon source obtaining the maximum enzymatic activity after 5–6 d of 8.5 IU/mL using native sugar cane bagasse. In this work we describe the evaluation of fermentation conditions: growth temperature, medium composition, and pH, also the agitation and aeration effects for β-glucosidase production under submerged culture using a culture media with corn syrup liquor (CSL) and native sugar cane bagasse pith as the sole carbon source in a laboratory fermenter. The maximum enzyme titer of 7.2 IU/mL was obtained within 3 d of fermentation. This indicates that β-glucosidase productivity by Aspergillus niger C-6 is function of culture conditions, principally temperature, pH, culture medium conditions, and the oxygen supply given in the bioreactor. Results obtained suggest that this strain is a potential microorganism that can reach a major level of enzyme production and also for enzyme characterization.  相似文献   

4.
A fungal strain, marked as ECU0913, producing high activities of both cellulase and xylanase was newly isolated from soil sample collected near decaying straw and identified as Penicillium sp. based on internal transcribed spacer sequence homology. The cultivation of this fungus produced both cellulase (2.40 FPU/ml) and xylanase (241 IU/ml) on a stepwisely optimized medium at 30 °C for 144 h. The cellulase and xylanase from Penicillium sp. ECU0913 was stable at an ambient temperature with half-lives of 28 and 12 days, respectively. Addition of 3 M sorbitol greatly improved the thermostability of the two enzymes, with half-lives increased by 2.3 and 188-folds, respectively. Catalytic performance of the Penicillium cellulase and xylanase was evaluated by the hydrolysis of corn stover pretreated by steam explosion. With an enzyme dosage of 50 FPU/g dry substrate, the conversions of cellulose and hemicellulose reached 77.2% and 47.5%, respectively, without adding any accessory enzyme.  相似文献   

5.
Seven cellulase preparations from Penicillium and Trichoderma spp. were evaluated for their ability to hydrolyze the cellulose fraction of hardwoods (yellow poplar and red maple) pretreated by organosolv extraction, as well as model cellulosic substrates such as filter paper. There was no significant correlation among hydrolytic performance on pretreated hardwood, based on glucose release, and filter paper activity. However, performance on pretreated hardwood showed significant correlations to the levels of endogenous β-glucosidase and xylanase activities in the cellulase preparation. Accordingly, differences in performance were reduced or eliminated following supplementation with a crude β-glucosidase preparation containing both activities. These results complement a previous investigation using softwoods pretreated by either organosolv extraction or steam explosion. Cellulase preparations that performed best on hardwood also showed superior performance on the softwood substrates.  相似文献   

6.
Sugar cane bagasse consists of hemicellulose (24%) and cellulose (38%), and bioconversion of both fractions to ethanol should be considered for a viable process. We have evaluated the hydrolysis of pretreated bagasse with combinations of cellulase, β-glucosidase, and hemicellulase. Ground bagasse was pretreated either by the AFEX process (2NH3: 1 biomass, 100 °C, 30 min) or with NH4OH (0.5 g NH4OH of a 28% [v/v] per gram dry biomass; 160 °C, 60 min), and composition analysis showed that the glucan and xylan fractions remained largely intact. The enzyme activities of four commercial xylanase preparations and supernatants of four laboratory-grown fungi were determined and evaluated for their ability to boost xylan hydrolysis when added to cellulase and β-glucosidase (10 filter paper units [FPU]: 20 cellobiase units [CBU]/g glucan). At 1% glucan loading, the commercial enzyme preparations (added at 10% or 50% levels of total protein in the enzyme preparations) boosted xylan and glucan hydrolysis in both pretreated bagasse samples. Xylanase addition at 10% protein level also improved hydrolysis of xylan and glucan fractions up to 10% glucan loading (28% solids loading). Significant xylanase activity in enzyme cocktails appears to be required for improving hydrolysis of both glucan and xylan fractions of ammonia pretreated sugar cane bagasse.  相似文献   

7.
UV-49, the mutant ofPenicillium funiculosum, showed higher production of cellulase although the specific activity with regards to filter paper activity was unaltered (0.7 U/mg). Fractionation of culture filtrates by isoelectric focusing indicated the presence of three endoglucanases and two β-glucosidases in the parent strain, whereas one endoglucanase and one β-glucosidase for UV-49. The thermostability of activity towards filter paper, CM-cellulose and ρ-nitrophenyl-β-D-glucoside of the parent strain was about 30–50% more than the corresponding activities of the mutant. The saccharification of bagasse with the enzymes from parent (66%) and mutant (62%) was comparable. However, the recovery of enzyme from residual cellulose was 10–20% less in case of the mutant. The formation of higher oligosaccharides in the hydrolysates of UV-49 on prolonged incubation indicated the presence of transglycosylation activity in the enzyme complex. In contrast the parent strain produces glucose; the desired end product of the practical saccharification.  相似文献   

8.
The biorefinery process for sugarcane bagasse saccharification generally requires significant accessibility of cellulose. We reported a novel method of cascade cellulase enzymatic hydrolysis coupling with ultrafine grinding pretreatment for sugarcane bagasse saccharification. Three enzymatic hydrolysis modes including single cellulase enzymatic hydrolysis, mixed cellulase enzymatic hydrolysis, and cascade cellulase enzymatic hydrolysis were compared. The changes on the functional group and surface morphology of bagasse during cascade cellulase enzymatic hydrolysis were also examined by FT-IR and SEM respectively. The results showed that cascade enzymatic hydrolysis was the most efficient way to enhance the sugarcane bagasse sacchari cation. More than 65% of reducing sugar yield with 90.1% of glucose selectivity was achieved at 50 oC, pH=4.8 for 72 h (1200 r/min) with cellulase I of 7.5 FPU/g substrate and cellulase II of 5 FPU/g substrate.  相似文献   

9.
Cellulase production was investigated in pH-controlled cultures of Acremonium cellulolyticus. The response to culture pH was investigated for three cellulolytic enzymes, carbomethyl cellulase (CMCase), avicelase, and β-glucosidase. Avicelase and β-glucosidase showed similar profiles, with maximum activity in cultures at pH 5.5–6. The CMCase activity was highest in a pH 4 culture. At an acidic pH, the ratios of CMCase and avicelase activity to cellulase activity defined by filter paper unit were high, but at a neutral pH, the β-glucosidase ratio was high. The pH 6.0 culture showed the highest cellulase activity within the range of pH 3.5–6.5 cultures. The saccharification activity from A. cellulolyticus was compared to those of the cellulolytic enzymes from other species. The A. cellulolyticus culture broth had a saccharification yield comparable to those of the Trichoderma enzymes GC220 and Cellulosin T2, under conditions with the same cellulase activity. The saccharification yields from Solka floc, Avicel, and waste paper, measured as the percent of released reducing sugar to dried substrate, were greater than 80% after 96 h of reaction. The yields were 16% from carboxymethylcellulose and 26% from wood chip refiner. Thus, the A. cellulolyticus enzymes were suitable for converting cellulolytic biomass to reducing sugars for biomass ethanol production. This study is a step toward the establishment of an efficient system to reutilize cellulolytic biomass.  相似文献   

10.

This study evaluated the production of lignocellulose-degrading enzymes by solid-state fermentation (SSF) using a microbial consortium of Aspergillus fumigatus SCBM6 and A. niger SCBM1 (AFN extract). The fungal strains were cultivated in sugarcane bagasse (SCB) and wheat bran (WB) as lignocellulosic substrates for 7 days at 30 °C. After SSF, the highest peaks of enzyme production were 150 and 80 U g−1 for β-xylosidase and β-glucosidase at 48 h, 375 U g−1 for xylanase at 96 h, and 80 U g−1 for endoglucanase and 4 U g−1 for cellulase activity on filter paper (FPase) at 144 h. The efficiency of the produced AFN extract was investigated in the enzymatic hydrolysis of crude biomass sorghum (BS) and after the removal of extractives (ES). After saccharification, the glucose and xylose concentrations were 10× superior in ES than in BS hydrolysate (2.5 g L−1 after 12 h). The presence of inhibitors of alcoholic fermentation, such as formic acid, was also reduced in ES hydrolysates, indicating that the removal of extractives positively contributed to the effectiveness of enzymatic hydrolysis of biomass sorghum using AFN extract.

  相似文献   

11.
In typical fermentations at 45‡C on cellulose/corn steep liquor/ammonium and mineral salts medium, growth of the thermophilic fungusTalaromyces emersonii increases rapidly up to about 50 h and then decreases, presumably because of cell lysis, sporulation, or both. The accumulation of cellulase activity follows closely on growth and essentially reaches a maximum at about the same time that cell protein does. By contrast, two peaks of Β-glucosidase activity are observed, one maximal at about 36 h and the second at about 75 h. Fractionation of culture filtrates showed that the cellulase system is comprised of at least four endoglucanases (EC 3.2.1.4), four or five exoglucanases (cello-biohydrolase; EC 3.2.1.91), and three types of Β-glucosidase (cellobiase; EC 3.2.1.21). All are glycoproteins. Indeed, variation in carbohydrate content may account for some of the observed multiplicity of enzyme forms. Although none of the individual components is active against cellulose, reconstitution experiments show that appropriate mixtures of each type act synergistically to effect hydrolysis of substrate. In addition to the three extracellular Β-glucosidases I (Mr, 135,000), II (Mr, 100,000), and III (Mr, 45,700), an intracellular form, IV (Mr, 57,600), has been isolated. All exist as single polypeptides. The extracellular forms I and III are most active at 70‡C, pH 5, and have half-lives under these conditions of 6 and 3 h, respectively. By contrast, the intracellular form (IV) is most active at 35‡C and is rapidly denatured at higher temperatures. Substrate specificity and other studies provide clues to their possible roles in vivo. Β-Glucosidase III acts as an exoglucohydrolase by removing glucose residues from cellooligosaccharides arising from the action of endocellulases. Β-Glucosidase I is the major enzyme involved in cleaving cellobiose and short chain cellooligosaccharides. In doing so it relieves the inhibition by cellobiose of cellulase action. The intracellular form, Β-glucosidase IV, may have a dual role. By virtue of its transferase activity it may convert incoming cellobiose to the active inducer of cellulase synthesis, whereas by cleaving cellobiose to glucose (hydrolase action) it provides energy for the cell and a repressor of cellulase formation. Four endocellulases have been purified to apparent homogeneity as judged by electrophoresis. Preliminary results show that they all have Mr values of about 70,000 and pI values less than 4. However, they differ from one another in carbohydrate content, thermal stability, and affinity for substrate. The complete cellulase system is most active at pH 4.2, 60–65‡C, and retains about 80% of its original activity after 5 d incubation at 60‡C, pH 5. Avicel and filter paper most effectively induce synthesis of the complete cellulase system, as measured by the ability of culture filtrate to digest filter paper. Cotton, Solka floc, and α-cellulose are also effective inducers, as are “wastes” such as newspaper, straw, and beet pulp. Little or no cellulase synthesis is evident when lactose, cellobiose, or glucose replaces cellulose in growth media. From a practical viewpoint we find that saccharification of beet pulp is most readily achieved by using enzyme (i.e., culture filtrate) obtained by growing the organism on medium containing beet pulp as the source of cellulose. Of the various strains ofTalaromyces emersonii investigated for cellulase production, we found CBS 814.70 to be the best, yielding approx. 0.5 IU/mL of culture filtrate. By medium optimization and genetic manipulation we have isolated a number of mutants of this strain giving 2 IU/mL or more and enzyme productivities of 20–25 IU/L/h. Xylanase, arabinogalactanase, and pectinase activities have also been detected in culture filtrates of the organism when grown on beet pulp. Various lignocellulosic materials, including cotton, Solka floc, Avicel, filter paper, newspaper, and straw, can be degraded by the enzyme system. However, much of our effort has been directed to investigation of the saccharification of beet pulp since it is available in large quantities at central locations and because its lignin content is low. About 85% of the dry weight of this material is accounted for by cellulose, hemicellulose, and pectin in roughly equal proportions. Culture filtrates effect significant saccharification of pulp as measured by the release of reducing sugars or of glucose. Ball-milling the pulp prior to incubation with enzyme effects considerable improvement in the extent of digestion. Alkali or peracetic acid pretreatment of the ball-milled substrate facilitates enzymic hydrolysis even further. Good results are also obtained when unmilled pulp is (a) pretreated with pectinase prior to incubation with normal culture filtrates or (b) incubated with more concentrated culture filtrates with good pectinase activity. Under suitable conditions, 80% hydrolysis of beet pulp polysaccharides was achieved in 5 d at 60‡C, pH 5.  相似文献   

12.
Enzymatic hydrolysis is an important but expensive step in the production of ethanol from biomass. Thus, the production of efficient enzymatic cocktails is of great interest for this biotechnological application. The production of endoglucanase and xylanase activites from F. verticillioides were optimized in a factorial design (25) followed by a CCDR design. Endoglucanase and xylanase activities increased from 2.8 to 8.0 U/mL and from 13.4 to 114 U/mL, respectively. The optimal pH and temperature were determined for endoglucanase (5.6, 80 °C), cellobiase (5.6, 60 °C), FPase (6.0, 55 °C) and xylanase (7.0, 50 °C). The optimized crude extract was applied in saccharification and fermentation of sugarcane bagasse from which 9.7 g/L of ethanol was produced at an ethanol/biomass yield of 0.19.  相似文献   

13.
Studies were carried out on saccharification of pretreated tapioca waste and water hyacinth under two different conditions: using microbial enzymes (cellulase fromMyrothecium verrucaria, Coprinus comatus,Pleurotus florida, andCellulomonas sp.) and solid-state fermentation. The rate of saccharification was determined at different temperatures, pH, substrate concentration, and incubation period. It was found that as the source of the enzyme varies, the optimal temperature and pH for the saccharification varies. Among the two different treatments, enzymatic saccharification was found to be the most efficient. Among the various cellulase sources tested, M.verrucaria cellulase was found to be the most efficient one followed byC. comatus, P. florida, and finallyCellulomonas sp.  相似文献   

14.
Cellulose II hydrate was prepared from microcrystalline cellulose (cellulose I) via its mercerization with 5 N NaOH solution over 1 h at room temperature followed by washing with water. The structure of cellulose II hydrate changed to that of cellulose II after drying. Compared with cellulose II, cellulose II hydrate exhibited a slightly (8.5%) expanded structure only along the direction. The hydrophobic stacking sheets of the cellulose II were conserved in the cellulose II hydrate, and water molecules could be incorporated in the inflated two-chain unit cell of cellulose II hydrate. Enzymatic hydrolysis of cellulose I, cellulose II hydrate, and cellulose II was carried out at 37 °C using solutions comprising a mixture of cellulase and β-glucosidase. The hydrolysis of cellulose II hydrate proceeded much faster than the hydrolysis of the other two substrates, while the saccharification ratio of cellulose II was only slightly higher than that of cellulose I. The alkaline mercerization treatment was also applied to sugarcane bagasse. After its direct mercerization, the cellulose in bagasse was converted from cellulose I to cellulose II hydrate, and then to cellulose II after drying. Similar to in the case of microcrystalline cellulose, the rate of the enzymatic hydrolysis of the mercerized bagasse without drying (cellulose II hydrate) was much faster than the enzymatic hydrolysis of the other two substrates. Thus, the wet forms of cellulose and cellulosic biomass after mercerization, and after hydrolysis with cellulolytic enzymes, afforded superior products with extremely high degradability.  相似文献   

15.
Pleurotus sajor-caju grows efficiently and degrades all the components present in lignocellulosic residues. Production of cellulase and xylanase enzymes in submerged culture and during solid state cultivation has been studied. An initial pH of 5.0 was found to be optimal for the production of cellulase in shake flasks; this was attained in about 6–8 d in a medium containing either cellulose or rice straw as the sole source of carbon. On the cellulose medium, the maximum filter paper activity attained was 0.15 IU/mL in 7 d whereas the endoglycanase activity of 1.0 IU/mL, xylanase activity of 1.55 IU/mL, and Β-glucosidase activity of 0.57 IU/mL were acheived after 9 d fermentation. The reducing sugars were absent in the culture medium. The cellulases (filter paper activity and endoglucanases) were most active at pH 5.0 and 45‡C. Xylanase had maximum activity at pH 4.8 and 45‡C, and Β-glucosidase at pH 5.5 and 40‡C. In shake cultures,P. sajor-caju produced dispersed suspension of short mycelial threads and various sizes of pellets. The profile and extent of enzyme biosynthesis during submerged cultivation on rice straw was found to be of the same nature as obtained on cellulose. During solid state cultivation ofP. sajor-caju on rice straw beds for 36 d, the elaboration of enzyme activities did not appear to follow any definite pattern. However, filter paper activity, which is representative of cellulase action in hydrolyzing cellulose, remained more or less constant during the period of about the first 20 d of cultivation after the appearance of fruit bodies on the surface of rice straw beds. All the activities attained their minimum values after 23 d of cultivation, during which approximately 1 kg of fresh fruit bodies had been harvested. The total fruit bodies harvested till 36th days were approx. 1.1 kg. ThroughT. sajor-caju elaborates cellulase and xylanse extracellularly, the activity values were not as high as those of other cellulase producers such asTrichoderma reesei.  相似文献   

16.
Diminishing fossil fuel reserve and increasing cost of fossil hydrocarbon products have rekindled worldwide effort on conversion of lignocellloloses (plant biomass) to renewable fuel. Inedible plant materials such as grass, agricultural, and logging residues are abundant renewable natural resources that can be converted to biofuel. In an effort to mimic natural cellulolytic–xylanolytic microbial community in bioprocessing of lignocelluloses, we enriched cellulolytic–xylanolytic microorganisms, purified 19 monocultures and evaluated their cellulolytic–xylanolytic potential. Five selected isolates (DB1, DB2, DB7, DB8, and DB13) were used to compose a defined consortium and characterized by 16S ribosomal RNA gene sequence analysis. Nucleotide sequence blast analysis revealed that DB1, DB2, DB7, DB8, and DB13 were respectively similar to Pseudoxanthomonas byssovorax (99%), Microbacterium oxydans (99%), Bacillus sp. (99%), Ochrobactrum anthropi (98%), and Klebsiella trevisanii (99%). The isolates produced an array of cellulolytic–xylanolytic enzymes (filter paper cellulase, β-glucosidase, xylanase, and β-xylosidase), and significant activities were recorded in 30 min. Isolates DB1 and DB2 displayed the highest filter paper cellulase: 27.83 and 31.22 U mg−1, respectively. The highest β-glucosidase activity (18.07 U mg−1) was detected in the culture of isolate DB1. Isolate DB2 produced the highest xylanase activity (103.05 U mg−1), while the highest β-xylosidase activity (7.72 U mg−1) was observed with DB13. Use of microbial consortium in bioprocessing of lignocelluloses could reduce problems such as incomplete synergistic enzymes, end-product inhibition, adsorption, and requirement for high amounts of enzymes in direct use of enzymes.  相似文献   

17.
Sugarcane bagasse is an agroindustrial residue generated in large amounts in Brazil. This biomass can be used for the production of cellulases, aiming at their use in second-generation processes for bioethanol production. Therefore, this work reports the ability of a fungal strain, Trichoderma harzianum IOC-4038, to produce cellulases on a novel material, xylan free and cellulose rich, generated from sugarcane bagasse, named partially delignified cellulignin. The extract produced by T. harzianum under submerged conditions reached 745, 97, and 559 U L−1 of β-glucosidase, FPase, and endoglucanase activities, respectively. The partial characterization of this enzyme complex indicated, using a dual analysis, that the optimal pH values for the biocatalysis ranged from 4.9 to 5.2 and optimal temperatures were between 47 and 54 °C, depending on the activity studied. Thermal stability analyses revealed no significant decrease in activity at 37 °C during 23 h of incubation. When compared to model strains, Aspergillus niger ATCC-16404 and Trichoderma reesei RutC30, T. harzianum fermentation was faster and its extract showed a better balanced enzyme complex, with adequate characteristics for its application in simultaneous saccharification and fermentation processes.  相似文献   

18.
The effects of the starch, protein, and soluble oligosaccharides contents in wheat bran on the extracellular biomass-hydrolyzing enzymes activities released by Penicillium decumbens mycelia grown in batch fermentations have been examined. The results showed increased starch content correlated directly with an increase in released amylase activity but inversely with the levels of secreted cellulase and xylanase. High amounts of protein in wheat bran also reduced the activities of cellulase, xylanase and protease in the culture medium. The effects of the soluble and insoluble components of wheat bran and cello-oligosaccharides supplements on production of extracellular cellulase and xylanase were compared. The soluble cello-oligosaccharides compositions in wheat bran were proved to be one of the most significant factors for cellulase production. According to the results of this research, determining and regulating the composition of wheat bran used as a fermentation supplement may allow for improved induction of cellulase and xylanase production.  相似文献   

19.
The hydrolysis of cellulose to the water-soluble products cellobiose and glucose is achieved via synergistic action of cellulolytic proteins. The three types of enzymes involved in this process are endoglucanases, cellobiohydrolases, and β-glucosidases. One of the best fungal cellulase producers is Trichoderma reesei RUT C30. However, the amount of β-glucosidases secreted by this fungus is insufficient for effective cellulose conversion. We investigated the production of cellulases and β-glucosidases in shake-flask cultures by applying three pH-controlling strategies: (1) the pH of the production medium was adjusted to 5.8 after the addition of seed culture with no additional pH adjustment performed, (2) the pH was adjusted to 6.0 daily, and (3) the pH was maintained at 6.0 by the addition of Tris-maleate buffer to the growth medium. Different carbon sources—Solka Floc 200, glucose, lactose, and sorbitol—were added to standard Mandels nutrients. The lowest β-glucosidase activities were obtained when no pH adjustment was done regardless of the carbon source employed. Somewhat higher levels of β-glucosidase were measured in the culture filtrates when daily pH adjustment was carried out. The effect of buffering the culture medium on β-glucosidase liberation was most prominent when a carbon source inducing the production of other cellulases was applied.  相似文献   

20.
Lignocellulosic materials pretreated using liquid hot water (LHW) (220°C, 5 MPa, 120 s) were fermented to ethanol by batch simultaneous saccharification and fermentation (SSF) usingSaccharomyces cerevisiae in the presence ofTrichoderma reesei cellulase. SSF of sugarcane bagasse (as received), aspen chips (smallest dimension 3 mm), and mixed hardwood flour (−60 +70 mesh) resulted in 90% conversion to ethanol in 2–5 d at enzyme loadings of 15–30 FPU/g. In most cases, 90% of the final conversion was achieved within 75 h of inoculation. Comminution of the pretreated substrates did not affect the conversion to ethanol. The hydrolysate produced from the LHW pretreatment showed slight inhibition of batch growth ofS. cerevisiae. Solids pretreated at a concentration of 100 g/L were as reactive as those pretreated at a lower concentration, provided that the temperature was maintained at 220°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号