首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adaptation of the ENSIC model to physisorption of nitrogen or argon on a solid surface first led to a 3 parameters model called multilayer adsorption equilibrium model (MAE model). One of these parameters is related to the formation of a multilayer of adsorbate on the solid surface. Exploitation of data from the literature pointed out that this parameter does not depend on the nature of the solid surface and an average value was calculated in the case of N2 and Ar. As a consequence, the MAE model can be considered as a 2 parameters model. Linearization of the model was established allowing an easy determination of surface areas of macroporous and some mesoporous solids. Fitting of isotherms of meso and macroporous solids has led to promising results compared to the ones obtained with the BET model. Moreover, adaptation of this model to microporous solids can also be used for an uncomplicated determination of porous volume and external surface. Results obtained from data of the literature were close to those obtained with the t-plot model.  相似文献   

2.
Carbonaceous materials with different hierarchical porous structures for electrorheological (ER) dispersed phase have been synthesized by carbonization of as-prepared starch/silica precurser at different temperatures. The N2 adsorption isotherms show that Cmeso-700 and Cmeso-500 particles have the BET surface areas of 1028 and 603 m2 g−1, respectively. They both have the mesoporous pores with size of about 4.6 nm and the microporous pores (1.1 and 1.5 nm, respectively). The BET surface areas and C/O atomic ratio of porous carbon materials can be increased with the carbonization temperatures. The rheological measurements indicate that the Cmeso-700 and Cmeso-500 ERF have the better ER effect resulted from their hierarchical porous structures. The shear stress of Cmeso-700 ERF is 900 Pa at 1000 s−1 under 3 kV mm−1, which is almost 4.5 times larger than that of Cmicro-350 ERF. The mesoporous carbon ERFs also show the better sedimentation stability than microporous carbon ERFs. The different ER effect of carbonaceous particles may derive from their different dielectric polarization property induced by the hierarchical porous structures.  相似文献   

3.
We present a novel quenched solid density functional theory (QSDFT) model of adsorption on heterogeneous surfaces and porous solids, which accounts for the effects of surface roughness and microporosity. Within QSDFT, solid atoms are considered as quenched component(s) of the solid-fluid system with given density distribution(s). Solid-fluid intermolecular interactions are split into hard-sphere repulsive and mean-field attractive parts. The former are treated with the multicomponent fundamental measure density functional. Capabilities of QSDFT are demonstrated by drawing on the example of adsorption on amorphous silica materials. We show that, using established intermolecular potentials and a realistic model for silica surfaces, QSDFT quantitatively describes adsorption/desorption isotherms of Ar and Kr on reference MCM-41, SBA-15, and LiChrosphere materials in a wide range of relative pressures. QSDFT offers a systematic approach to the practical problems of characterization of microporous, mesoporous, and amorphous silica materials, including an assessment of microporosity, surface roughness, and adsorption deformation. Predictions for the pore diameter and the extent of pore surface roughness in MCM-41 and SBA-15 materials are in very good agreement with recent X-ray diffraction studies.  相似文献   

4.
The validity of the fractal versions of the FHH and BET theories for describing the adsorption of butane and nitrogen on a variety of partially dehydroxylated silica surfaces has been tested. The fractal dimensions obtained from adsorption data have been compared with those obtained completely independently using SAXS. It was found that the fractal dimensions obtained from butane adsorption isotherms, using both the fractal FHH and fractal BET theories, agreed well with the corresponding values obtained from SAXS over overlapping length scales. However, in general, a systematic deviation between the fractal dimension obtained from nitrogen adsorption and that obtained from SAXS was observed. The fractal dimensions obtained from nitrogen adsorption were consistently larger than those obtained from SAXS, which is the opposite of what has often been found in the literature. It has been suggested that the differences in the suitability of the adsorption theories tested to describe butane and nitrogen adsorption is due to the significant difference between the interaction strengths of these two different molecules with silica surfaces. A modified theory that can account for the discrepancy between the fractal dimensions obtained from nitrogen adsorption and SAXS has been proposed. The implications of the new theory for the accuracy of nitrogen adsorption BET surface areas for silicas are discussed.  相似文献   

5.
Inverse gas chromatography (IGC) is frequently used to study adsorption processes at zero surface coverage on microporous activated carbons. This allows to determine the thermodynamic adsorption parameters as equilibrium constants, V(S), standard enthalpies of adsorption, Delta HA degrees, standard free energy of adsorption, Delta GA degrees, and so on. Nevertheless, the surface areas of the adsorbents (microporous carbons in this case) are needed for this purpose. The experimental determination of the surface areas of microporous solids is not univocal and the results depend on the adsorbate employed in the measurements, usually N2 or CO2. This means that the thermodynamic parameters obtained by IGC are subjected to a degree of uncertainty depending on whether N2 or CO2 is used to determine the surface area values. The aim of this paper is to discuss which of the two surface area values is more appropriate to be used in IGC measurements at zero surface coverage. Experimental and theoretical considerations are supplied in a thorough discussion which supports that CO2 surface area value is more appropriate. Thus, it is proposed that this should be used instead of the more generally extended nitrogen specific surface area obtained by the BET equation.  相似文献   

6.
Our study using the nonlocal density functional theory (NDFT) showed that active coals might have a bidisperse microporous structure. The binomial equation of the theory of volume filling of micropores (TVFM) approximates well the nitrogen adsorption isotherms at relative pressures from 1 × 10−4 to 0.2. The dominant micropore sizes calculated in terms of the characteristic adsorption energy lie in the region of the maximum of the size distribution of micropores calculated by the NDFT method. The tentative micropore sizes can be determined from the modified second term of the TVFM equation. The Henry and BET equations describe very limited regions of the nitrogen adsorption isotherm on microporous active coals.  相似文献   

7.
微孔聚合物由于具有较高的比表面积,因此可用作物理吸附贮氢材料.本文通过比较0.1MPa、77K下自具微孔聚合物、超交联聚合物等多孔聚合物与其它多孔贮氢材料(如碳材料、金属有机网络等)的贮氢性能,阐述了比表面积、孔尺寸及孔形貌、与氢气的作用力等因素对多孔聚合物贮氢量的影响,由于合成超交联聚合物的单体多且孔形貌容易控制,因此超交联聚合物成为具有发展潜力的贮氢聚合物.  相似文献   

8.
High-surface-area polyacrylonitrile (PAN) activated carbon fibers having different pore size distribution activated by KOH were investigated. Nitrogen adsorption, XRD, SEM, and TEM were used to characterize the microstructure of PAN-ACFs. The specific surface area of samples was calculated from the standard BET method, and micropore surface area and volume were obtained from the Horvath-Kawazoe equations. The average pore size and characteristic energy were calculated by the Dubinin-Radushkevich equation according to the multistage adsorption mechanism. The whole pore size distribution was calculated by employing the regularization method according to the density functional theory, which is based on a molecular model for the adsorption of nitrogen in porous solids. It was shown that the isotherms were type I, the pore size was around 0.4-0.8 nm, and the mesorpore size was around 2-4 nm. The XRD pattern showed that PAN-ACFs activated by KOH are of amorphous material composed of very small crystallites. The SEM and TEM results showed that the monograph differs with differing activation degree, and the network is uniform or disordered. That all of these methods are in good agreement with one another. Copyright 2001 Academic Press.  相似文献   

9.
Organic dyes, especially the harmful cationic dye methyl orange (MO), are emerging pollutants. The development of new materials for their efficient adsorption and removal is thus of great significance. Porous organic polymers (POPs) such as hyper-cross-linked polymers, covalent organic frameworks, conjugated microporous polymers, and polymers with intrinsic microporosity are a new class of materials constructed from organic molecular building blocks. To design POPs both with good porosity and task-specific functionalization is still a critical challenge. In this study, we have demonstrated a simple one-step method for the synthesis of the hyper-cross-linked aromatic triazine porous polymer (HAPP) via the Friedel-Crafts reaction. The resultant porous polymer was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, elemental analysis (EA), thermo-gravimetric analysis (TGA), solid-state 13C nuclear magnetic resonance (13C NMR), and nitrogen adsorption-desorption isotherms. The results show that HAPP is a rough, irregular morphology, porous organic polymer that is amorphous in nature. The novel polymer showed high Brunauer-Emmett-Teller surface area (of up to 104.36 m2∙g−1), porosity, and physicochemical stability. Owing to the presence of N heteroatom pore surfaces in the network, the material exhibited a maximum adsorption capacity of 249.3 mg∙g−1 for MO from aqueous solutions at room temperature. This is higher than that of some reported porous materials under the same conditions. To explain this phenomenon more clearly, theoretical quantum calculations were performed via the DFT method using Gaussian 09 software and Multiwfn version 3.4.1. It is performed to analyze the properties and electrostatic potential (ESP) of the HAPP monomer and MO. The results indicated that the N heteroatom of HAPP can easily develop strong interactions with MO, supporting the efficient adsorption of MO. The parameters studied include the physical and chemical properties of adsorption, pH, contact time, and initial concentrations. The percentage of MO removal increased as the pH was increased from 2 to 4. The optimum pH required for maximum adsorption was found to be 5.6. Adsorption kinetics data were modeled using the pseudo-first-order and pseudo-second-order models. The results indicate that the second-order model best describes the kinetic adsorption data. The adsorption isotherms revealed a good fit with the Langmuir model. More importantly, the HAPP can be regenerated effectively and recycled at least five times without significant loss of adsorption capacity. Therefore, it is believed that HAPPs with hierarchical porous structures, high surface areas, and physicochemical stability are promising candidates for the purification and treatment of dyes in solution.  相似文献   

10.
A gas adsorption rigid spheres model (RSM) was incorporated into the CPSM model (corrugated pore structure model) to correlate the pore surface areas obtained from the BET and CPSM methods. The latter is a method simulating the gas sorption hysteresis loop and enables the evaluation of surface areas S(CPSM) through the integration of the pertinent pore size distributions. Thus, S(CPSM) values are inherently influenced by pore curvature. The new CPSM-RSM version estimates surface areas S(CPSMfs) that are independent of pore curvature and can be compared with the pertinent S(BET) values. The RSM exploits the fact that a curved pore surface accommodates fewer molecules, assumed to behave as rigid spheres, than an equal flat one. Thus, the RSM accounts for a higher molecular surface coverage Ac (nm2/molec.) in pores with marked curvature than that (i.e., Af) on a flat surface. The ratio Ac/Af for nitrogen adsorbed on single pore sizes varies in the range Ac/Af = 1.44-1.03 for pore sizes D = 1.5-15 nm, respectively. Also for D = 1.5-5.0 nm the S(CPSMfs) and S(BET) values are lower by approximately 10-45% than the S(CPSM) estimates. From the application of the CPSM-RSM model on several porous materials exhibiting all known types of sorption hysteresis loops, it was confirmed that S(BET) approximately S(CPSMfs) (+/-5%) and (S(CPSM) - S(BET))/S(BET) = 3-68% for the materials examined. In conclusion, the BET method may produce quite conservative surface area estimates for materials exhibiting pore structures with appreciable pore curvature, whereas the CPSM-RSM model can reliably predict both S(CPSM) and S(CPSMfs) = S(BET) values.  相似文献   

11.
金属有机框架材料的研究进展   总被引:1,自引:0,他引:1  
金属有机框架(metal-organic frameworks,MOFs)材料是一类由有机配体与金属中心经过自组装形成的具有可调节孔径的材料。与传统无机多孔材料相比,MOFs材料具有更大的比表面积,更高的孔隙率,结构及功能更加多样,因而已经被广泛应用于气体吸附与分离、传感器、药物缓释、催化反应等领域中。新兴材料的出现极大地促进了各个学科间的相互发展,本文综述了近年来MOFs材料的研究发展,包括MOFs材料自身的特点、国内外发展现状、应用领域以及复合MOFs材料的研究热点,并对今后的发展进行了展望。  相似文献   

12.
The current work demonstrates that the standard adsorption analysis has a limited applicability for characterization of chemically modified porous silicas. Since low-pressure nitrogen adsorption isotherms are sensitive to the surface changes caused by chemical modification of silicas, these isotherms were successfully used to evaluate their surface heterogeneity during different stages of modification. The surface analysis was accomplished by using adsorption energy distributions and high-resolution comparative plots.  相似文献   

13.
L. F. Herrera  D. D. Do 《Adsorption》2009,15(3):240-246
This paper studies the effects of surface structure (defective surfaces) on the molecular projection area of argon and nitrogen at 77 K. The determination of the molecular projection area is based on choice of the surface area of the structure studied and the adsorption data obtained from the GCMC simulation. Two methods were used to determine the surface area: the flat surface area that are commonly used in the literature and the geometrical surface area. The molecular projection areas of argon and nitrogen at 77 K vary with pressure over the recommended range for BET plot (reduced pressures from 0.05 to 0.3) and also they varies with the percentage of defects on the surface. Additionally, it is seen that the geometrical surface area method gives molecular projection area of defective surfaces values that are in accordance with the experimental value reported in the literature.  相似文献   

14.
交联聚苯乙烯型多孔吸附剂的中孔性质研究   总被引:12,自引:0,他引:12  
采用77K温度下的氮气吸附方法,测定了经悬浮聚合制备的不同交联度的交联聚苯乙烯多孔吸附剂的吸附/脱附等温线.根据BET吸附模型计算了比表面,由吸附量计算了总的孔体积,由孔体积和比表面计算出平均孔径,并依据脱附等温线采用BJH方法计算孔径分布.结果表明,交联度对交联聚苯乙烯多孔吸附剂的孔结构均具有显著影响.随着交联聚苯乙烯多孔吸附剂的交联度升高,其孔径变小,比表面增大,而且低交联度吸附剂的中孔接近圆柱形,高交联吸附剂的中孔形状接近“墨水瓶”形.显然,交联度对孔性质的影响与孔结构在交联聚苯乙烯多孔吸附剂制备和后处理过程中的稳定性密切相关.交联度低时,初期形成的小孔不能保持稳定,在后续聚合及后处理过程中合并为大孔,结果造成低交联吸附剂大孔径、低比表面的现象.通过对孔径分布的研究,揭示了不同吸附剂在中孔范围内的孔特征,并对其形成机制进行了分析.  相似文献   

15.
The volumetric hydrogen adsorption isotherms of two isostructural dehydrated cubic metal nitroprussides M[Fe(CN)5NO] (M = Co2+, Ni2+) have been measured up to a pressure of 760 Torr at 77 and 87 K. These materials are among the most efficient H2 sorbents based on porous coordination polymers reported to date. The H2 uptake in both materials is approximately 1.6 wt % at 77 K and 760 torr. These H2 capacities match those reported recently in the structurally related M3[Co(CN)6]2 compounds and are approximately 25% higher than those reported for Zn4O(1,4-benzenedicarboxylate)3 under the same conditions of temperature and pressure. The isosteric heats of H2 adsorption calculated from the 77 and 87 K isotherms for both materials were found to vary from approximately 7.5 kJ/mol at 0.40 wt % coverage to approximately 5.5 kJ/mol at 1.2 wt % coverage. The N2 BET surface areas were determined to be 634 m2/g and 523 m2/g for M = Ni and M = Co, respectively.  相似文献   

16.
Hierarchically porous metal–organic frameworks (HP‐MOFs) are promising in various applications. Most reported HP‐MOFs are prepared based on the generation of mesopores in microporous frameworks, and the formed mesopores are connected by microporous channels, limiting the accessibility of mesopores for bulky molecules. A hierarchical structure is formed by constructing microporous MOFs in uninterrupted mesoporous tunnels. Using the confined space in as‐prepared mesoporous silica, highly dispersed metal precursors for MOFs are coated on the internal surface of mesoporous tunnels. Ligand vapor‐induced crystallization is employed to enable quantitative formation of MOFs in situ, in which sublimated ligands diffuse into mesoporous tunnels and react with metal precursors. The obtained hierarchically porous composites exhibit record‐high adsorption capacity for the bulky molecule trypsin. The thermal and storage stability of trypsin is improved upon immobilization on the composites.  相似文献   

17.
Transparent films of titania/poly(dimethylsiloxane) (PDMS) hybrids were prepared by the solvent evaporation from the precursor solution prepared by the co-hydrolysis and co-condensation of titanium tetraisopropoxide and a methoxy-functionalized PDMS. The hybrid films were flexible and had high homogeneity of the composition. The organic groups of PDMS were decomposed at 400°C in air to form porous films. Though the heated films were rather brittle compared to the as-synthesized films, they were still transparent and homogeneous. The BET surface areas of the films after the heat treatment at 400°C were over 300 m2/g, while the as-synthesized hybrid films were non porous. According to the BDDT classification, the nitrogen adsorption/desorption isotherms of the calcined films were Type I, showing that the films were microporous. The titania domains were still amorphous after the heat treatment at 400°C and transformed to anatase after the heat treatment at 1,000°C.  相似文献   

18.
冯丹  隗翠香  夏炎 《色谱》2017,35(3):237-244
金属有机骨架(MOFs)材料是一类以过渡金属为中心、含杂原子的有机物为配体、通过配位作用形成的周期性网络多孔晶体材料。与其他的多孔材料相比,MOFs配体种类繁多,比表面积极大,孔径大小可调控且具有特殊(饱和或不饱和)的金属位点,在气体存储、催化、吸附与分离等领域有广阔的应用前景。近年来,功能化MOFs对污染物的富集和去除成为学者关注的热点。这是由于通过对MOFs进行功能化修饰,能够改变MOFs的孔径大小、表面带电性质等物化性质,从而实现对目标物更高效的吸附。该文综述了近年来功能化MOFs对饮用水污染物吸附的研究进展,包括饮用水污染物的类型及危害、功能化MOFs的制备方法以及去除饮用水污染物的应用,并对今后的发展前景进行了展望。  相似文献   

19.
Nitrogen adsorption isotherms on nonporous and microporous carbons were thoroughly studied at low relative pressures. For nonporous carbons low pressure measurements seem to be unaffected by analysis conditions. However, these measurements on microporous solids may be affected by analysis conditions at relative pressures below 10–4. It was shown that selection of proper equilibration time is crucial for correct measurements of equilibrium pressures during adsorption on microporous carbons. The isotherm shift induced by insufficient equilibration of the system may affect the surface heterogeneity and microporosity analysis. A comparison of the adsorption energy and pore volume distribution functions calculated from low pressure nitrogen adsorption isotherms measured at different equilibration times on a microporous carbon shows that this effect is smaller than it was expected.  相似文献   

20.
Carbon aerogels derived from organic sol-gel process and supercritical drying are novel porous materials with interconnect structures and higher electrical conductivity, which are considered to be ideal electrode materials for supercapacitors and rechargeable batteries. The objective of the research was to synthesize carbon aerogel films at ambient conditions. Resorcinol formaldehyde (RF) and carbon aerogel films have been produced with extremely high RC ratio (molar ratio of resorcinol to catalyst) followed by subcritical drying. The structure of the porous films was investigated using electron scanning microscope. The specific surface area was measured by using nitrogen adsorption (BET) and electrical conductivity was measured with four-probe method. It was found that with extremely high RC ratio, the porous structure of RF and carbon aerogel films can be controlled from micro to macro porous at ambient conditions. With respect to the application as electrodes for fuel cells, carbon aerogel films with different porous structures on the two surfaces have been also obtained through optimizing the sol-gel process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号