首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Synchrony of discharge of auditory neurons to two-tone stimuli and "synchrony suppression" have been analyzed by examining the implications of the definition of vector strength. Synchrony suppression, defined as the reduction in the vector strength for one component when a second is introduced, occurs by definition when partial ("half-wave") rectification occurs in an otherwise linear system. It does so with the usual shifts (on the abscissa) of empirical vector strength curves, disproving any necessity for compressive or other nonlinearities. Synchrony suppression is sometimes defined incompatibly as the shift in dB of a vector strength curve--said to be the magnitude of suppression. That this conception is incorrect is shown by the identification of partial rectification with vector strength reduction and curve shift, but it can be shown to be a logical fallacy as well. The vector strength definition was also applied to the complex waveform obtained at the output of an instantaneous amplitude compressive nonlinearity. The shifts of vector strength growth and decay curves (at their crossover points) necessarily equal those in the linear case for any compressive nonlinearity that compresses equal inputs equally. But such a compressive nonlinearity is not without noticeable effects on vector strengths. If the input levels lie in the range leading to compressed outputs, differences in the relative input levels will be accentuated in the relative output levels in the period histogram. Compression thus contributes to greater differences in the vector strengths, for unequal input levels, than in the linear case. More visible effects on vector strength curves result from waveform distortion, which reduces vector strength saturation and crossover values and causes them to recede at higher input levels.  相似文献   

2.
Multicomponent stimuli consisting of two to seven tones were used to study suppression of basilar-membrane vibration at the 3-4-mm region of the chinchilla cochlea with a characteristic frequency between 6.5 and 8.5 kHz. Three-component stimuli were amplitude-modulated sinusoids (AM) with modulation depth varied between 0.25 and 2 and modulation frequency varied between 100 and 2000 Hz. For five-component stimuli of equal amplitude, frequency separation between adjacent components was the same as that used for AM stimuli. An additional manipulation was to position either the first, third, or fifth component at the characteristic frequency (CF). This allowed the study of the basilar-membrane response to off-CF stimuli. CF suppression was as high as 35 dB for two-tone combinations, while for equal-amplitude stimulus components CF suppression never exceeded 20 dB. This latter case occurred for both two-tone stimuli where the suppressor was below CF and for multitone stimuli with the third component=CF. Suppression was least for the AM stimuli, including when the three AM components were equal. Maximum suppression was both level- and frequency dependent, and occurred for component frequency separations of 500 to 600 Hz. Suppression decreased for multicomponent stimuli with component frequency spacing greater than 600 Hz. Mutual suppression occurred whenever stimulus components were within the compressive region of the basilar membrane.  相似文献   

3.
4.
The responses of single auditory-nerve fibers in anesthetized cats to two-tone stimuli were studied. One of the two tones, F1, was near, above, or below characteristic frequency (CF). The second tone, F2, was located above CF. With sufficient care, F2 was made purely suppressive, eliciting no synchrony responses by itself. The vector phases of the associated period histogram calculated for F1 were carefully studied. For 78% of the fibers under study, a statistically significant increase in phase lag was consistently observed when a suppression of rate discharge occurred. The phase-intensity curve did not approximate a horizontally shifted version of the unsuppressed curve, as is seen for the related rate- and synchrony-intensity curves; rather, the amount of phase shift at any one stimulus condition tended to be monotonically related to the amount of rate suppression generated (vertical shift). Using two different measures, a significant correlation was found between the added phase lag and the discharge-rate reduction caused by F2. The amount of phase lag, along with the corresponding rate reduction, increases with the increasing intensity of F2 within the suppression area, and decreases as F2 moves away from it. These phase-lag effects were found to be uncorrelated with a fiber's CF, with its spontaneous rate, with its threshold, or with its Q value. By contrast, a reduction of discharge rate due to adaptation was not accompanied by any significant phase shift. Fatigue of the fiber due to lengthy sound exposure was found to have strong effects on the shift of response phase to single-tone stimuli.  相似文献   

5.
The representation of Schroeder-phase harmonic complex sounds in the ventral cochlear nucleus (VCN) of the anesthetized chinchilla was studied. Stimuli consisted of a series of harmonically related sinusoids, multiples of a fundamental frequency (f0), summed in either negative (-SCHR) or positive (+SCHR) Schroeder phase. Psychoacoustic experiments performed in humans by other investigators have revealed that masking effects of -SCHR stimuli are larger than those found using +SCHR stimuli as maskers. In our laboratory, basilar membrane measurements at the base of the chinchilla cochlea show that responses to -SCHR stimuli are less "peaked," or modulated, than responses to +SCHR stimuli. We also found that suppression of a characteristic-frequency (CF) tone by -SCHR stimuli is larger than that evoked by +SCHR stimuli. Rate-intensity functions display higher firing rates in responses to -SCHR stimuli than in those produced by +SCHR stimuli. Firing rates evoked by either -SCHR or +SCHR stimuli saturate at lower values than those obtained in responses to CF tones. Rate and synchrony suppressions by -SCHR stimuli were larger than those evoked by +SCHR stimuli. Auditory nerve fiber responses to Schroeder complex stimuli share most of the properties of VCN responses, indicating little additional processing by the VCN.  相似文献   

6.
Brain-stem auditory-evoked responses (BAERs) were obtained in six normal-hearing adults using single-tone and two-tone stimuli arithmetically centered around 4000 Hz. Two-tone stimuli varied in frequency separation from 200 to 3200 Hz, and started in-phase (homophasic) or 180 deg out-of-phase (antiphasic) with each other. Responses to each of the single-tone components of the two-tone stimuli were elicited and then summed for comparison with responses to the two-tone stimuli. Results indicated no significant difference in wave V latency between homophasic or antiphasic two-tone conditions, and summed single-tone conditions. Under the homophasic condition, the mean latency for the widest frequency separation of the tones was significantly longer than those for narrower separations. A significant difference in wave V amplitude between two-tone phase conditions was found for frequency separations of 200, 400, and 3200 Hz only. Summed single-tone BAERs demonstrated a significantly larger wave V amplitude than responses from either two-tone phase condition at all frequency separations.  相似文献   

7.
Responses to two-tone stimuli were recorded from auditory-nerve fibers in anesthetized cats. One tone, the suppressor, was set at a frequency above characteristic frequency and was fixed in intensity. A second tone was set at an excitatory frequency and was varied in intensity. The suppressor tone, when set at a sufficient level, always reduced the response to the excitatory tone by an amount equivalent to a fixed number of decibels, regardless of the excitatory tone's intensity. Estimates of suppression magnitude were derived from shifts in rate-intensity function obtained when the suppressor tone was present relative to the functions obtained for the excitatory tone alone. When suppressor-tone intensity was increased, suppression magnitude likewise increased. When the two tones were increasingly separated in frequency, either by varying the excitor or by varying the suppressor, suppression magnitude decreased monotonically. Suppression behaved in the same manner regardless of whether suppresor tone was excitatory or nonexcitatory. When frequency separation was small enough and when both tones were above the neuron's characteristic frequency, responses synchronized to low-order combination tones could be elicited. These responses usually possessed different rate-intensity characteristics and resulted in estimates of suppression magnitude which were spuriously low. When frequency separation is normalized with regard to position of traveling wave maxima within the cochlear duct, the magnitude of two-tone suppression for a given suppressor-tone intensity is seen to be frequency independent.  相似文献   

8.
Nonlinear characteristics of plane strontium titanate film capacitors operating at microwave frequencies are investigated by measuring the power of a capacitor signal generated at the third-order intermodulation distortion (IMD) product frequency when the capacitor is excited by a two-tone microwave signal. Measurements are performed at 4 GHz at temperatures of 78 and 300 K. At T=300 K, the nonlinear response of the capacitor corresponds to the nonlinearity determined from the low-signal capacitance-voltage characteristic (CVC). At T=78 K, the nonlinear response to a two-tone microwave signal is greatly amplified when the signal components have equal amplitudes and close frequencies. It is demonstrated that this effect is due to the beat-frequency modulation of the strontium titanate film temperature, because the thermal time constant of a SrTiO3 film on sapphire is small (~10?8 s). An analytical expression for third-order IMD product power generated by a SrTiO3 capacitor is obtained with regard for the heat-induced nonlinearity.  相似文献   

9.
Sounds with frequencies >15 kHz elicit an acoustic startle response (ASR) in flying crickets (Eunemobius carolinus). Although frequencies <15 kHz do not elicit the ASR when presented alone, when presented with ultrasound (40 kHz), low-frequency stimuli suppress the ultrasound-induced startle. Thus, using methods similar to those in masking experiments, we used two-tone suppression to assay sensitivity to frequencies in the audio band. Startle suppression was tuned to frequencies near 5 kHz, the frequency range of male calling songs. Similar to equal loudness contours measured in humans, however, equal suppression contours were not parallel, as the equivalent rectangular bandwidth of suppression tuning changed with increases in ultrasound intensity. Temporal integration of suppressor stimuli was measured using nonsimultaneous presentations of 5-ms pulses of 6 and 40 kHz. We found that no suppression occurs when the suppressing tone is >2 ms after and >5 ms before the ultrasound stimulus, suggesting that stimulus overlap is a requirement for suppression. When considered together with our finding that the intensity of low-frequency stimuli required for suppression is greater than that produced by singing males, the overlap requirement suggests that two-tone suppression functions to limit the ASR to sounds containing only ultrasound and not to broadband sounds that span the audio and ultrasound range.  相似文献   

10.
Two simple models are examined in order to explain the observation that a portion of the binaural-evoked response is less than the sum of monaural-evoked responses in human and animal subjects. The sum of monaural responses minus the binaural response is called the binaural difference (BD). Each model acts on binaural input signals and applies a single memoryless nonlinearity. One model (IE) applies a rectifying nonlinearity to the difference of input signals, while the other (EE) applies a compressive nonlinearity to the sum of input signals. These models are suggested by properties of inhibitory-excitatory (IE) and excitatory-excitatory (EE) neurons of the auditory brainstem. Parameters can be found that enable each model to produce a ratio of BD to summed monaural response which is invariant with input stimulus level. The IE model, but not the EE model, has a BD whose level is linearly related to input stimulus level.  相似文献   

11.
The effects of stimulus frequency on two-tone suppression were investigated in single auditory-nerve fibers of anesthetized cats and compared with human psychophysical data. In the physiological experiment, both average discharge rate and phase-locked activity were measured in response to one- and two-tone stimuli. The first component f1 produced an increase in rate above spontaneous activity when presented alone. The second tone f2 was always well below the fiber's characteristic frequency and was held at a fixed sound pressure level appropriate to produce two-tone suppression. Responses were plotted as a function of stimulus level of the first tone both alone and in the presence of f2. For different values of f1 with f2 fixed, suppression was maximum with f1 near fiber CF. In the psychophysical experiment, similar stimulus parameters of f1 and f2 were used as the masker in a forward-masker paradigm. In this experiment the addition of the second masker tone at frequency f2 could produce less masking of the signal. When f1 was varied with f2 fixed, the relative decrease in masking, analogous to suppression, was greatest when f1 was equal to the signal frequency.  相似文献   

12.
A two-stage nonlinear cochlear model possesses automatic gain control   总被引:1,自引:0,他引:1  
A model of the cochlea is explored using as stimuli two simultaneously presented sinusoids of equal amplitude. The model consists of two stages: a linear bandpass filter, followed by a reservoir-type representation of the hair-cell/nerve-fiber complex. Fast Fourier transforms of the model's output were computed. While the amplitudes of the individual response components were strongly nonlinear functions of intensity, the ratio of the magnitudes of the response components at the frequencies of the two stimulating sinusoids was found to be nearly equal, over a wide intensity range, to the ratio of the amplitudes which those stimulating sinusoids possessed at the output of the filter. Thus the reservoir stage exerts "automatic gain control".  相似文献   

13.
The first comprehensive computational model of the precortical mammalian auditory system to include afferent neural processing up to the level of the dorsal acoustic stria (DAS) is described. The model consists of two scissile stages simulating (1) the cochlea and auditory nerve (AN) and (2) the dorsal cochlear nucleus (DCN). The model derives its input from a 128-channel cochlear filterbank. Cochlear transduction, rectification, logarithmic compression, and two-tone suppression functions are performed at the first stage of the simulation. The 512 artificial neurons employed model the cell at the level of transmembrane potential and have interconnections that follow closely those reported in recent anatomical and physiological studies of the cat AN and DCN. The responses of the model to pure-tone stimuli (at various sound-pressure levels) and noise stimuli (at various levels and bandwidths) are reported in detail and compare well with published results. The model is being used to investigate the representation of initial English stop consonants (differing in voice-onset time) in the DAS; this work is briefly described.  相似文献   

14.
大口径相机主镜/次镜结构动力减振的研究   总被引:6,自引:2,他引:4  
丁福建  李英才 《光子学报》1999,28(5):458-462
本文对大口径相机结构次镜相对主镜的振动进行了分析,并提出了次镜动力减振的减振方式,且对动力减振系统进行了分析。最后对某相机的动力减振结构进行了优化设计,并计算了一定冲击激励下原结构与带动力减振结构的响应时间历程。结果表明动力减振具有一定的减振效果,对相机高成象质量的保证具有一定的应用意义.  相似文献   

15.
Consonance/dissonance affects human perception of chords from early stages of development [e.g., Schellenberg and Trainor, J. Acoust. Soc. Am. 100, 3321-3328 (1996)]. To examine whether consonance has some role in audition of nonhumans, three Japanese monkeys (Macaca fuscata) were trained to discriminate simultaneous two-tone complexes (chords). The task was serial discrimination (AX procedure) with repetitive presentation of background stimuli. Each tone in a chord was comprised of six harmonics, and chords with complex ratios of fundamental frequency (e.g., frequency ratio of 8:15 in major seventh) resulted in dissonance. The chords were transposed for each presentation to make monkeys attend to cues other than the absolute frequency of a component tone. Monkeys were initially trained to detect changes from consonant (octave) to dissonant (major seventh). Following the successful acquisition of the task, transfer tests with novel chords were conducted. In these transfer tests, the performances with detecting changes from consonant to dissonant chords (perfect fifth to major seventh; perfect fourth to major seventh) were better than those with detecting reverse changes. These results suggested that the consonance of chords affected the performances of monkeys.  相似文献   

16.
The relation between auditory filters estimated from psychophysical methods and peripheral tuning was evaluated using a computational auditory-nerve (AN) model that included many of the response properties associated with nonlinear cochlear tuning. The phenomenological AN model included the effects of dynamic level-dependent tuning, compression, and suppression on the responses of high-, medium-, and low-spontaneous-rate AN fibers. Signal detection theory was used to evaluate psychophysical performance limits imposed by the random nature of AN discharges and by random-noise stimuli. The power-spectrum model of masking was used to estimate psychophysical auditory filters from predicted AN-model detection thresholds for a tone signal in fixed-level notched-noise maskers. Results demonstrate that the role of suppression in broadening peripheral tuning in response to the noise masker has implications for the interpretation of psychophysical auditory-filter estimates. Specifically, the estimated psychophysical auditory-filter equivalent-rectangular bandwidths (ERBs) that were derived from the nonlinear AN model with suppression always overestimated the ERBs of the low-level peripheral model filters. Further, this effect was larger for an 8-kHz signal than for a 2-kHz signal, suggesting a potential characteristic-frequency (CF) dependent bias in psychophysical estimates of auditory filters due to the increase in strength of cochlear nonlinearity with increases in CF.  相似文献   

17.
A mathematical model for the temperature dependence of the bolometer semiconductor resistance is presented. The model, basically a sine-series function, can easily yield closed-form expressions for the harmonic and intermodulation performance of the acquired interferogram voltage with large-amplitude multisinusoidal variations in the incident radiation. The special case of two-tone equal-amplitude incident radiation is considered in detail. The results show that the intermodulation components are always higher than the harmonic components of the same order. The results also show that the second-order intermodulation is always dominant and is higher than the second-harmonic component by about 6 dB. Moreover, the results show that for relatively small incident amplitudes of the incident radiation the ratio between the second- and third-harmonic components is almost equal to the ratio between the second-harmonic component and the fundamental. The results also show that the ratio between the amplitudes of the second- and third-order intermodulation components is almost equal to the ratio between the amplitudes of the second-order intermodulation component and the fundamental.  相似文献   

18.
《Physica A》2005,351(1):175-183
Cochlear two-tone suppression is the dominant contrast-sharpening phenomenon of hearing and provides a decisive test for the correct implementation of hearing nonlinearities in models of the cochlea. Although critically tuned Hopf amplifiers were shown recently to be fruitful models of intricate phenomena in the physiology of the human ear, we find that only a model based on subcritical Hopf amplifiers is capable of reproducing physiologically measured two-tone suppression data adequately. In addition, we provide a detailed explanation of the two-tone suppression phenomenon, including its quantitative characterization.  相似文献   

19.
Dust-ion acoustic waves are investigated in this model of plasma consisting of negatively charged dusts,cold ions and inertia less quantum effected electrons with the help of a typical energy integral.In this case,a new technique is applied formulating a differential equation to establish the energy integral in case of multi-component plasmas which is not possible in general.Dust-ion acoustic(DIA) compressive and rarefactive,supersonic and subsonic solitons of various amplitudes are established.The consideration of smaller order nonlinearity in support of the newly established quantum plasma model is observed to generate small amplitude solitons at the decrease of Mach number.The growths of soliton amplitudes and potential depths are found more sensitive to the density of quantum electrons.The small density ratio r(=1-f) with a little quantized electrons supplemented by the dust charges Z_d and the in-deterministic new quantum parameter C_2 are found responsible to finally support the generation of small amplitude solitons admissible for the model.  相似文献   

20.
Computational algorithms that mimic the response of the basilar membrane must be capable of reproducing a range of complex features that are characteristic of the animal observations. These include complex input output functions that are nonlinear near the site's best frequency, but linear elsewhere. This nonlinearity is critical when using the output of the algorithm as the input to models of inner hair cell function and subsequent auditory-nerve models of low- and high-spontaneous rate fibers. We present an algorithm that uses two processing units operating in parallel: one linear and the other compressively nonlinear. The output from the algorithm is the sum of the outputs of the linear and nonlinear processing units. Input to the algorithm is stapes motion and output represents basilar membrane motion. The algorithm is evaluated against published chinchilla and guinea pig observations of basilar membrane and Reissner's membrane motion made using laser velocimetry. The algorithm simulates both quantitatively and qualitatively, differences in input/output functions among three different sites along the cochlear partition. It also simulates quantitatively and qualitatively a range of phenomena including isovelocity functions, phase response, two-tone suppression, impulse response, and distortion products. The algorithm is potentially suitable for development as a bank of filters, for use in more comprehensive models of the peripheral auditory system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号