首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Given an undirected graph G=(V,E)G=(V,E) with a set V of vertices and a set E of edges, the graph coloring problem consists of partitioning all vertices into k independent sets and the number of used colors k is minimized. This paper presents a memetic algorithm (denoted by MACOL) for solving the problem of graph coloring. The proposed MACOL algorithm integrates several distinguished features such as an adaptive multi-parent crossover (AMPaX) operator and a distance-and-quality based replacement criterion for pool updating. The proposed algorithm is evaluated on the DIMACS challenge benchmarks and computational results show that the proposed MACOL algorithm achieves highly competitive results, compared with 11 state-of-the-art algorithms. The influence of some ingredients of MACOL on its performance is also analyzed.  相似文献   

2.
针对经典的图着色问题,在蚁群算法的基础上结合量子计算提出一种求解图着色问题的量子蚁群算法. 将量子比特和量子逻辑门引入到蚁群算法中,较好地避免了蚁群算法搜索易陷入局部极小的缺陷,并显著加快了算法的运算速度. 通过图着色实例的大量仿真实验,表明算法对图着色问题的求解是可行的、有效的,且具有通用性.  相似文献   

3.
A Branch-and-Cut algorithm for graph coloring   总被引:1,自引:0,他引:1  
In this paper a Branch-and-Cut algorithm, based on a formulation previously introduced by us, is proposed for the Graph Coloring Problem. Since colors are indistinguishable in graph coloring, there may typically exist many different symmetrical colorings associated with a same number of colors. If solutions to an integer programming model of the problem exhibit that property, the Branch-and-Cut method tends to behave poorly even for small size graph coloring instances. Our model avoids, to certain extent, that bottleneck. Computational experience indicates that the results we obtain improve, in most cases, on those given by the well-known exact solution graph coloring algorithm Dsatur.  相似文献   

4.
We present an approach based on integer programming formulations of the graph coloring problem. Our goal is to develop models that remove some symmetrical solutions obtained by color permutations. We study the problem from a polyhedral point of view and determine some families of facets of the 0/1-polytope associated with one of these integer programming formulations. The theoretical results described here are used to design an efficient Cutting Plane algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号