首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The design optimization process is frequently accompanied by repetitive time-consuming operations, through the design analysis with a few modifications in its parameters, until the required system is encountered. Whenever possible, it is more convenient to use the sensitivity analysis during the optimization, which permits a fast evaluation of the model performance without doing a completely new analysis. In this work, one methodology for obtaining dynamic optimal structural shape through parameters changing was developed for coupled fluid-structure systems, which took advantage of the modal sensitivity analysis and available nonlinear programming tools. The objective of this work is to maximize the gap between two adjacent eigenvalues in coupled fluid-structure systems, in order to avoid the resonance phenomena at a specific natural frequency interval, taking the height of the cross-section of the beam structural elements as design variables with some dimensional constraints and a constant structural volume. The sequential quadratic programming algorithm was used for solving the constrained nonlinear optimization problem, and the modal sensitivity analysis was considered for the modal prediction of the modified design, as well as for the gradient evaluation of the objective function and system's constraints, throughout the optimization. The study was verified in two-dimensional coupled fluid-structure systems, where the structural system is modeled as a beam. The implemented methodology can be applied to avoid resonant situations or to improve the vibroacoustic comfort, for example, in cabins and reservoirs.  相似文献   

2.
本文提出了对粘性阻尼线性振动系统的复模态二次广义特征值问题进行高效近似求解的一种新的矩阵摄动分析方法,即先将阻尼矩阵分解为比例阻尼部分和非比例阻尼部分之和,并求得系统的比例阻尼实模态特征解;然后以此为初始值,将阻尼矩阵的非比例部分作为对其比例部分的小量修改,利用摄动分析方法简捷地得到系统的复模态特征值问题的近似解.这一新方法适用于振系阻尼分布不十分偏离比例阻尼情况的问题,因此对大阻尼(非过阻尼)振动系统也有效.这是它优于以前提出的基于无阻尼实模态特征解的类似摄动分析方法的重要特点.文中建立了复模态特征值和特征向量的二阶摄动解式,并通过算例证实了其有效性.此外还讨论了利用比例阻尼假定估计阻尼系统固有振动的复特征值的可行性.  相似文献   

3.
The control of a distributed-parameter system can be effected by a transformation to a finite-dimensional discrete system in terms of modal coordinates. If only a limited number of modal coordinates is controlled, then a phenomenon that has come to be known as control and observation spillover occurs. Observation spillover has been demonstrated to cause instability in undamped systems. This paper shows that a minimal amount of damping can eliminate the instability, at least for the case considered.This work was supported by the Naval Research Laboratory, Space Systems Division, Advanced Systems Branch, under ONR Research Grant No. N00014-78-C-0194.  相似文献   

4.
Dynamics modelling of multi-body systems composed of rigid and flexible elements is elaborated in this article. The control of such systems is highly complicated due to severe underactuated conditions caused by flexible elements and an inherent uneven non-linear dynamics. Therefore, developing a compact dynamics model with the requirement of limited computations is extremely useful for controller design, simulation studies for design improvement and also practical implementations. In this article, the rigid–flexible interactive dynamics modelling (RFIM) approach is proposed as a combination of Lagrange and Newton–Euler methods, in which the motion equations of rigid and flexible members are separately developed in an explicit closed form. These equations are then assembled and solved simultaneously at each time step by considering the mutual interaction and constraint forces. The proposed approach yields a compact model rather than a common accumulation approach that leads to a massive set of equations in which the dynamics of flexible elements is united with the dynamics equations of rigid members. The proposed RFIM approach is first detailed for multi-body systems with flexible joints, and then with flexible members. Then, to reveal the merits of this new approach, few case studies are presented. A flexible inverted pendulum is studied first as a simple template for lucid comparisons, and next a space free-flying robotic system that contains a rigid main body equipped with two manipulating arms and two flexible solar panels is considered. Modelling verification of this complicated system is vigorously performed using ANSYS and ADAMS programs. The obtained results reveal the outcome accuracy of the new proposed approach for explicit dynamics modelling of rigid–flexible multi-body systems such as mobile robotic systems, while its limited computations provide an efficient tool for controller design, simulation studies and also practical implementations of model-based algorithms.  相似文献   

5.
One important issue for the simulation of flexible multibody systems is the reduction of the flexible body's degrees of freedom. For the reduction process finite element data and user inputs are necessary. The model reduction program for elastic multibody systems MOREMBS, which is developed at the ITM, has an easy-to-use interface and the data can be gained from the programs ABAQUS or ANSYS. In this work, the simulation of a fuel injection process is investigated with MOREMBS. We focus on the interaction between valve and armature. These two bodies impact in every injection circle. The impacting bodies are modeled as flexible and the contact force is calculated by a penalty approach. One essential part of this work is the investigation of the influence of different model reduction techniques on the impact force calculation of the flexible multibody system. The main reduction techniques modal reduction, Krylov-subspace based and Gramian matrix based techniques are compared. The results achieved with modal reduction, the state of the art reduction method, are not acceptable here. Krylov-subspace based techniques are especially well-suited for large sparse systems but are not error controlled. However, by choosing appropriate moment-matching properties the impact force calculation is nearly as good as with a full finite element model. The Gramian matrix based reduction techniques can be fully automated and are error controlled but require high computational effort. Hence, appropriate approximation schemes have to be used for them. With Gramian matrix based methods we can even further reduce the size of the subsystems compared to Krylov-subspace based methods and still have an impact force calculation nearly as good as with finite element results, but we gain a simulation speedup by the factor 4000. In addition, a parameter study of the parameters involved in the model reduction process is presented. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
In this paper we develop an efficient numerical method for the finite element model updating of damped gyroscopic systems. This model updating of damped gyroscopic systems is proposed to incorporate the measured modal data into the finite element model to produce an adjusted finite element model on the damping and gyroscopic matrices that closely match the experimental modal data.  相似文献   

7.
In many fields of engineering problems linear time-invariant dynamical systems (LTI systems) play an outstanding role. They result for instance from discretizations of the unsteady heat equation and they are also used in optimal control problems. Often the order of LTI systems is a limiting factor, since it becomes easily very large. As a consequence these systems cannot be treated efficiently without model reduction algorithms. In this paper a new approach for the combination of model order reduction methods and recent multi-level substructuring (MLS) techniques is presented. Similar multi-level substructuring methods have already been applied successfully to huge eigenvalue problems up to several millions of degrees of freedom. However, the presented approach does not make use of a modal analysis like former algorithms. Instead the original system is decomposed in smaller LTI systems which are treated with recent model reduction methods. Furthermore, the error which is induced by this substructuring approach is analysed and numerical examples based on the Oberwolfach benchmark collection are given in this paper.  相似文献   

8.
Frequency domain solution of systems with frequency dependent damping is a computationally expensive endeavour especially when dealing with large order three-dimensional systems. A moment-matching based reduced order model is proposed in this work which is capable of handling nonlinear frequency dependent damping in second-order systems. In the proposed approach, local linear systems with frequency independent matrices are derived from the original system, and using the principles of the Rational Krylov approach, orthogonal basis vectors are computed from these local systems through the second-order Arnoldi procedure. The system is then projected on to the basis set to obtain a numerically efficient reduced order model, accurate in the entire frequency domain of interest. The proposed approach is also shown to be more accurate than the popular modal projection based multi-model approach of the same order. The proposed tool is applied to the problem of determining the frequency response of an idealised centrifugal compressor impeller with non-viscous (frequency dependent) damping.  相似文献   

9.
非线性系统动力分析的模态综合技术   总被引:6,自引:0,他引:6  
各种模态综合方法已广泛应用于线性结构的动力分析,但是,一般都不适用于非线性系统. 本文基于[20][21]提出的方法,将一种模态综合技术推广到非线性系统的动力分析.该法应用于具有连接件耦合的复杂结构系统,以往把连接件简化为线性弹簧和阻尼器.事实上,这些连接件通常具有非线性弹性和非线性阻尼特性.例如,分段线性弹簧、软特性或硬特性弹簧、库伦阻尼、弹塑性滞后阻尼等.但就各部件而言,仍属线性系统.可以通过计算或试验或兼由两者得到一组各部件的独立的自由界面主模态信息,且只保留低阶主模态.通过连接件的非线性耦合力,集合各部件运动方程而建立成总体的非线性振动方程.这样问题就成为缩减了自由度的非线性求解方程,可以达到节省计算机的存贮和运行时间的目的.对于阶次很高的非线性系统,若能缩减足够的自由度,那么问题就可在普通的计算机上得以解决. 由于一般多自由度非线性振动系统的复杂性,一般而言,这种非线性方程很难找到精确解.因此,对于任意激励下系统的瞬态响应,可以采用数值计算方法求解缩减的非线性方程.  相似文献   

10.
对于考虑阻尼项和陀螺项的一般线性动力学振动系统,建立基于辛本征空间展开求解的一般方法.基于Rayleigh商本征值的模态展开方法被广泛应用于复杂结构动力系统振动分析,但对于很多机械系统,由于其不能有效考虑陀螺效应的影响,其适用性却受到很大限制.该文首先讨论了无阻尼系统Rayleigh商本征值问题与辛本征值问题的对应关系,表明前者实际可由后者的一种退化形式给出(也即忽略陀螺效应),而后者更具有一般性.在此基础上,进一步基于辛本征空间本征向量展开,推导了同时考虑阻尼和陀螺系统的一般线性动力学系统的有效求解方法.数值算例选取不考虑陀螺效应及考虑陀螺效应的两种线性阻尼振动系统对所提出的方法进行了验证,分析结果表明了该文所建立方法的正确性和有效性.  相似文献   

11.
Obtaining accurate models of systems which are prone to failures and breakdowns is a difficult task. In this paper we present a methodology which makes the task of modeling failure prone discrete event systems (DESs) considerably less cumbersome, less error prone, and more user-friendly. The task of obtaining commonly used automata models for DESs is non-trivial for most practical systems, owing to the fact that the number of states in the commonly used automata models is exponential in the number of signals and faults. In contrast a model of a discrete event system, in the rules based modeling formalism proposed by the co-authors of this paper, is of size polynomial in the number of signals and faults. In order to model failures, we augment the signals set of the rules based formalism to include binary valued fault signals, the values representing either a non-faulty or a faulty state of a certain failure type. Addition of new fault signals requires introduction of new rules for the added fault signal events, and also modification of the existing rules for non-fault events. The rules based modeling formalism is further extended to model real-time systems, and we apply it to model delay-faults of the system as well. The model of a failure prone DES in the rules based can automatically be converted into an equivalent (timed)-automaton model for a failure analysis in the automaton model framework.  相似文献   

12.
In this work, an alternative Kelvin viscoelastic formulation for the finite element method (FEM) is described. This formulation performs spatial approximations before considering time integration and makes use of differential viscoelastic relations. A matrix time differential equation arises from the proposed formulation. It is solved numerically by a time marching procedure. It is shown that, after a small simplification, this methodology can be employed together with existent dynamic FEM packages. The methodology is extended to dynamic analysis leading to a rheological explanation for the first order modal decomposition stiffness proportional damping matrix. Plates and shells applications are shown in order to demonstrate the proposed formulation accuracy and stability.  相似文献   

13.
The main motivation for writing this article is to develop a model library for an All-Electric Ship that gives an opportunity to simulate both existing and new machinery systems without having to remodel the entire system each time. The model library should support the process of modelling and reuse, while also emphasizing openness to brace the modeller during the development and refinement phase. The bond graph approach is good when it comes to the physical modelling of systems and is a good tool for combining different energy domains to better help in understanding the system. In addition, a bond graph is a powerful method to find dependencies between various components. Using a causal analysis, any problems in the model, for example, algebraic constrains or dependent system variables, will be detected, and the necessary remodelling may be performed to handle such problems. The bond graph approach is therefore used when developing the component library. The component library consists of selected power producers such as diesel and gas engines, fuel cell and synchronous generator and power consumers such as asynchronous motor with a voltage source converter in addition to a generic load used for hotel and auxiliary loads. The library also consists of a ship model and propeller models.  相似文献   

14.
15.
16.
基于非线性动力学理论,对一类高维二阶耗散自治动力系统的降维及其对解的长期行为的影响进行了理论分析.该分析将方程的解投影到控制方程的线性算子的特征向量所张成的完备空间中,并在相空间中引入一距离的概念,方便地解决了缩减后系统与原始系统解之间的误差或距离的描述.基于此距离定义,首先,分析了由于高阶模态的截取对解的长期行为的影响,并推导出了相应的误差估计,该估计表明由于降维对系统长期行为的影响不仅与系统的高阶子空间中的固有频率和阻尼比乘积的最小值有关,并且与高阶子空间中的某一最大固有频率有关.然后,将一般的模态截取视为对原系统的解的一个扰动,对一些文献中由于降维程度的不同而造成解的拓扑性质发生变化的现象进行了定性的解释.  相似文献   

17.
In the development of feedback control theory for distributed parameter systems (DPS), i.e., systems described by partial differential equations, it is important to maintain the finite dimensionality of the controller even though the DPS is infinite dimensional. Since this dimension is directly related to the available on-line computer capacity, it must be finite (and not very large) in order to make the controller implementable from an engineering standpoint. In previous work, it has been our intention to investigate what can be accomplished by finite-dimensional control of infinite-dimensional systems; in particular, we have concentrated on controller design and closed-loop stability. The starting point for all of this is some means for producing a finite-dimensional approximation—a reduced-order model—of the actual DPS. When the “modes” of the DPS are known, the natural candidate for model reduction is projection onto the modal subspace spanned by a finite number of critical modes. Unfortunately, in real engineering systems, these modes are never known exactly and some other reasonable approximation must be used. In this paper, the model reduction is based on the well-known Galerkin procedure. We generate the Galerkin reduced-order model and develop a finite-dimensional controller from it; then we analyze the stability of this controller in closed loop with the actual DPS. Our results indicate conditions under which model reduction based on consistent Galerkin approximations will lead to stable finite-dimensional control.  相似文献   

18.
Wojciech Pakos  Zbigniew Wójcicki  Jacek Grosel 《PAMM》2007,7(1):4130009-4130010
In this paper, the problems of eliminating vibration in cable stayed footbridges and bridges by dynamically steering the tension in cables during construction vibration are considered. A physical and a mathematical model of cable stayed footbridges and bridges has been formulated. A damping model has been selected on the basis of an analysis of vibrations due to periodic excitation. Standard computer software and the author's own program, both leaning on Finite Element Method (FEM), have been used to analyze the eigenproblem and the forced vibration of bridges. On the basis of the formulated theory an efficient algorithm of forced vibration reduction analysis was established. The reduction is achieved by dynamically steering the tension in cables. A sensitivity analysis has been used. An example has been provided. The theory presented takes into account the new method in the elimination of vibration in cable stayed bridges and footbridges. It can therefore be applied to dynamic analysis of modern cable stayed bridges with typical structure systems. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
本文运用重合度理论,在阻尼可负的条件下,得到Lienard型系统存在调和解的若干新判据。  相似文献   

20.
Malte Rösner  Rolf Lammering 《PAMM》2012,12(1):709-710
Model order reduction (MOR) is commonly used to approximate large-scale linear time-invariant dynamical systems. A new feed unit based on a compliant mechanism consisting of flexure hinges can be described by a discrete system of n ordinary differential equations. A projection framework using modal and Krylov subspace techniques is applied to reduce the order of the system to lower computational cost and make the model feasible for control, analysis and optimization. Single flexure hinges are investigated numerical, analytical and experimental and compared to reduced models via modal and tangential Krylov subspace methods regarding the first eigenfrequency. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号