首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The intercalation of amines into titanium phenylphosphonate M(O3PC6H5)2 and titanium phenylarsonate M(O3AsC6H5)2 was investigated through batch and back-titration processes. Amine insertion in both layered lamellar inorganic matrices, measured by the number of moles of intercalated agent, was optimized using a complete factorial design based on two levels and four factors. The effects of solvent, ethanol and acetonitrile, neutral organic base, ethyl and propylamines, H3C(CH2)nNH2 (n=1, 2), and material mass, 30 and 40 mg, on amine insertion in both lamellar inorganic matrices was optimized using a full factorial design. Important positive effect values, 0.40×10−3 and 0.69×10−3 mol g−1 were observed for inorganic material and solvent whereas a negative effect, −0.33×10−3 mol g−1 was observed for material mass. Two significant but less important binary interactions were also observed. The use of either ethyl or propylamine does not appear to affect the quantity of amine insertion. Recommended experimental conditions for maximum amine insertion obtained from this factorial design are 30 mg of titanium phenylarsonate in acetonitrile solvent using either of the studied amines.  相似文献   

2.
Summary The influence of an adsorption process on the oxidation of oxalic acid on a gold electrode has been analysed. To disclose this influence, different supporting electrolytes have been used with different adsorption of the anion (SO 4 2– , NO 3 and ClO 4 ). Moreover, it has been studied the modifications produced in the oxidation process by the presence of some species in solution with a strong adsorption (halides), but at low concentration levels.
Der Einfluß der Adsorption auf die Oxidation von Oxalsäure an der Goldelektrode in saurem Medium
Zusammenfassung Um den Einfluß der Adsorption auf die Oxidation von Oxalsäure an der Goldelektrode in saurem Medium zu untersuchen, wurden Support-Elektrolyten mit verschiedener Anionenadsorption verwendet (SO 4 2– , NO 3 und ClO 4 ). Außerdem wurden Modifikationen des Oxidationsprozesses in der Gegenwart von stark adsorbierten Spezies, diese allerdings in geringen Konzentrationen, untersucht (Halogenide).
  相似文献   

3.
Accelerating the separation efficiency of photoexcited electron-hole pairs with the help of highly active co-catalysts has proven to be a promising approach for improving photocatalytic activity. Thus far, the most developed co-catalysts for semiconductor-based photocatalysis are inorganic materials; the employment of a specific organic molecule as a co-catalyst for photocatalytic hydrogen evolution and pollutant photodegradation is rare and still remains a challenging task. Herein, we report on the use of an organic molecule, oxamide (OA), as a novel co-catalyst to enhance electron-hole separation, photocatalytic H2 evolution, and dye degradation over TiO2 nanosheets. OA-modified TiO2 samples were prepared by a wet chemical route and demonstrated improved light absorption in the visible-light region and more efficient charge transport. The photocatalytic performance of H2 evolution from water splitting and rhodamine B (RhB) degradation for an optimal OA-modified TiO2 photocatalyst reached 2.37 mmol g-1 h-1 and 1.43 × 10?2 min?1, respectively, which were 2.4 and 3.8 times higher than those of pristine TiO2, respectively. A possible mechanism is proposed, in which the specific π-conjugated structure of OA is suggested to play a key role in the enhancement of the charge transfer and catalytic capability of TiO2. This work may provide advanced insight into the development of a variety of metal-free organic molecules as functional co-catalysts for improved solar-to-fuel conversion and environmental remediation.  相似文献   

4.
This work deals with cementation of copper onto iron grid in a fixed bed reactor. The influence of several parameters is studied, namely: initial concentration of copper [Cu2+]0, temperature and flow rate. Moreover, their influence on the copper cementation reaction is investigated statistically by the experimental design in view of industrial application. The estimation and the comparison of the parameter’s effects are realized by using two-level factorial design. The analysis of these effects permits to state that the most influential factor is initial concentration of copper [Cu2+]0 with an effect of (+2.4566), the second in the order is the temperature with an effect of (+0.18959), the third is the flow rate of the electrolytic solution with an effect of (?0.4226). The significance interactions found by the design of experiments are between initial concentrations of copper ions–flow rate (x1x3) with an effect (b13 = +0.6965).  相似文献   

5.
Anatase TiO2 sols (RS) were synthesized by peptizing the hydrolysis of titanyl sulfate in abundant hydrogen peroxide solution and subsequent reflux to enhance crystallization. The influences of various reflux time on crystallinity, morphology, and size of the obtained TiO2 sol and dried TiO2 film particles were investigated. At room temperature, crystalline TiO2 thin film was deposited on glass silde from the as prepared TiO2 sol by dip-coating method. No further thermal posttreatment was required to eliminate organics from the film or to induce titania crystallization. TiO2 thin film on substrates could be thickened by means of consecutive dip-coating process. Titania film thus obtained was transparent and showed proper adherence. The photocatalytic activities of the TiO2 thin film was assessed by the degradation of methyl orange in aqueous solution. The preparation process of photocatalytic TiO2 thin film was quite simple and a low-temperature route.  相似文献   

6.
Stationary phase crosslinking conditions for fused silica capillary columns were optimized with the use of a factorial design experiment. This experimental strategy was chosen because it provided for the determination of two-factor interactions. A predictive model was developed for the desired chromatographic performance parameters as a function of the variables of the crosslinking reaction. Confirmatory experiments proved the usefulness of the mathematical model which resulted in the production of capillary columns of superior performance with significant improvements in reproducibility.  相似文献   

7.
A novel sol–gel technique using the PTA (peroxo titanic acid) sol as precursor for the fabrication of TiO2 photocatalytic thin film is introduced in this paper. The peroxo titanic acid sol was synthesized from titanyl sulfate (TiOSO4), ammonia and peroxide solution (H2O2). The transparent and porous TiO2 thin film was prepared via a sol–gel technique using PTA sol and polyethylene glycol (PEG) as precursor and template, respectively. The TiO2 thin film samples were characterized by the X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–visible spectrophotometry (UV–vis), X-ray photoelectron spectrum (XPS) and thermogravimetry and differential thermal analysis (TG-DTA) technique. The PTA sol displayed amorphous TiO2 below 100 °C. The anatase phase formed at 200 °C to 700 °C. The crystallinity of anatase phase was improved with increasing temperature. The anatase crystals on the surface of TiO2 film were strip-like, the size being about 100 nm in length and 40 nm in diameter. Addition of PEG to the PTA sol developed porous structures in the film and changed the size and shape of the particles. The surface of the film contained Ti, O and C elements and Na element that diffused into the film from the glass substrate. The photocatalytic performance of TiO2 film was tested for the degradation of 10 mg/L methyl orange. The degradation of methyl orange solution reached 98.9% after irradiated for 180 min under UV light. The porous TiO2 thin film exhibited high photocatalytic activity towards degrading methyl orange.  相似文献   

8.
Hashemi P  Bagheri S  Fat'hi MR 《Talanta》2005,68(1):72-78
An agarose-based anion exchanger (Q-Sepharose) was loaded with chromotropic acid (CTA) and used for column preconcentration and determination of copper by flame AAS. Preliminary experiments indicated that a sample pH of 5.7-6.5 is best suited for accumulation of copper and a 2.5 ml portion of a 0.02 mol l−1 HCl solution can efficiently desorb the analyte from the column. An incomplete factorial design was used for optimization of five different variables that affect recovery of copper. The results indicated that ionic strength, pH and sample volume variables are the most important effects, respectively. Hence, these variables and their possible interactions were studied more carefully. In optimized conditions, the column could tolerate up to 0.18 mol l−1 sodium nitrate in the matrix. A 5 ml portion of a 0.02 mol l−1 CTA was sufficient for loading of a 0.5 ml column prior to preconcentration of copper from a 150 ml sample solution. Matrix ions of Ca2+, Mg2+, Na+ and K+ and potentially interfering ions of Pb2+, Ni2+, Cd2+, Co2+, Zn2+ and Mn2+ with relatively high concentrations did not have any significant effect on the recovery of the analyte. A preconcentration factor of 60 and a detection limit of 1.0 μg l−1 was obtained for the determination of copper by the flame AAS method. A precision better than 2.5%, expressed as R.S.D., was also achieved. Application of the method to tap water and two different river water samples resulted in values well confirmed by direct determinations with ET-AAS.  相似文献   

9.
Analytical results of anion determination by suppressed ion chromatography are significantly affected by calibration curve calculation. In this paper, as expected, eluent pKa is shown to influence calibration linearity in the range 1–20 mg/l sulfate, with A carbonate-hydrogencarbonate mixture producing a larger non-linearity than NaOH. Evidence is given for very large errors (about 30–40%) in estimating sample sulfate concentration when linear regression is used instead of a quadratic calibration curve. This study was performed following a 24 run full factorial experimental design, including eluent pKa, counterion type, solution composition and current level for background suppression as main variables.  相似文献   

10.
Studies on the photo-catalytic redox reaction of C1–C3 alcohols such as methanol, ethanol and 2-propanol were carried out in aqueous solution containing TiO2 photocatalyst (0.1% w/v) as suspension using 350 nm light. Other hydrocarbons such as ethane and ethene in the case of ethanol, and propene in the case of 2-propanol with low yields were produced along with the major photolytic products methane and carbon dioxide. The yields of methane and CO2 were found to be dependent on the light exposure time and ambient conditions. Methane yields were higher in 2-propanol and ethanol systems than in methanol system, showing their better hole-scavenging properties. In the aerated condition, methane was produced during photolysis of all alcohols in the presence of TiO2 and the yield was comparable to those observed in the corresponding CO2-saturated systems. The overall results reveal that the surface adsorbed, as well as in-situ-generated CO2 from photo-oxidation of alcohols are equally responsible for methane formation through photo-reduction in presence of TiO2. In the O2-saturated system, the methane yield was lower as compared to that in aerated system, in contrast to the CO2 yield. In N2O-and N2-purged systems, the yield of methane was observed to be low, inferring that the methane generation has not taken place through photodecomposition/photodissociation of alcohols. Again, photolysis of alcohols without TiO2 did not generate any methane.  相似文献   

11.
Wingkei Ho 《催化学报》2015,(12):2109-2118
由于人们80%的时间呆在室内,室内空气的质量直接影响人类健康,因此近年来室内空气质量越来越受到人们的关注.室内污染物包括CO氮氧化物(NOx)和挥发性有机化合物(VOCs),它们给人体健康带来众多负面影响.更为重要的是,考虑到节能,现代建筑的空气密闭性大都较高,但这种减少吸入新鲜空气的设计直接导致室内各种污染物的累积.有些家用电器,如燃气灶和热水器,在使用的时候会涉及到煤、油和天然气的燃烧,特别是通风较差的情况下会成为室内主要的污染源.常规的治理技术,包括吸附和过滤,其成本相对较高,也不适用于低浓度污染物的治理.尤其是更换不及时的过滤器在排风系统中可能会成为VOCs的一个来源.因此,很有必要开发一种新型的技术以降低室内污染物的浓度和保持一个清洁的室内空气环境,从而保障人们的身体健康.光催化是去除室内空气污染物的有效方法.例如, TiO2、钛酸铋和钛酸锶等具有强氧化能力和稳定的光催化活性,因而是高效的光催化剂.一般而言,通常报道的TiO2光催化剂是高度分散的、或悬浮于液体介质中的细小颗粒或粉末.然而,粉末状的TiO2光催化剂不适宜于室内空气净化,因为它变得可吸入而对人体健康造成不利的影响.因此,人们尝试将TiO2颗粒作为薄膜固定在不同的刚性载体上,如玻璃、不锈钢和铝合金板.对基体进行涂覆可显著影响光催化时反应物的表面吸附行为.一般而言,光催化薄膜通常涂覆在平面上,如蜂窝空气过滤器.三维(3D)多孔的陶瓷泡沫对气体通过具有非常好的流体性质,因此本文以它作为涂覆的基体.这种陶瓷泡沫具有3D多孔结构,多种孔密度、比表面积和化学性质.3D多孔陶瓷泡沫空气过滤器的床层空隙率较高,因此使用时压降较低,且不像蜂窝空气过滤器,它具有复杂多变的孔结构,可增强流体的扰动和混合.另外,3D多孔陶瓷泡沫空气过滤器的开发多孔和网状的结构使得在催化体系具有非常好的气体动力学性质,催化剂表面和气体反应物有充分的接触.多孔材料在液相或气相催化反应中具有独特的优势,因此,陶瓷泡沫、多孔的氧化铝、多孔硅胶.分子筛和活性炭经常被用作催化剂载体.在固体基体上TiO2膜的形成可能使得TiO2光催化剂的有效比表面积降低,从而导致其光催化活性下降.然而,由于具有中孔结构的TiO2薄膜的比表面积大,其用于催化反应的活性位也更多,因此使用时仍然具有较高的活性.前期研究表明,涂覆在平面玻璃、不锈钢和氧化铝基体上的中孔TiO2薄膜用于环境净化时表现出增强的光催化效率.另外,室内环境中NO和NO2的浓度一般分别为几百个ppb之内和100 ppb以下.可见, NO是主要的室内空气污染物,对人体健康危害较大.基于此,本文首次采用反胶束法将中孔锐钛矿TiO2薄膜均匀一地涂覆在3D多孔高比表面积的泡沫过滤器上,采用X射线衍射、扫描电镜、X射线光电子能谱、N2吸附-脱附、紫外-可见光光谱和原子力显微镜对所制样品进行了表征,并将样品用于紫外光下催化降解NO,以揭示所制的中孔TiO2涂层具有高的比表面积和高的光催化活性,从而克服使用TiO2粉末所带来的不足.结果表明,由于中孔TiO2薄膜涂层具有较大的有效比表面积,其表面存在很多吸附活性位,用于吸附在反应过程中形成的水蒸汽、气相反应物和产物,因而具有更高的光催化活性,因此在陶瓷泡沫空气净化系统中可以高效地光催化NO降解:在所考察的不同孔密度的陶瓷泡沫过滤器涂覆的TiO2上400 ppb的NO单程转化率均在92.5%以上,高于涂覆在平面陶瓷砖上的TiO2.该陶瓷过滤器的3D多孔特性可增强流体的扰动和混合,使得气相反应物与光催化剂表面有着充分的接触;其大的孔密度也导致高的光催化速率.另外,本文所制样品在所有反应过程中均保持较高且稳定的NO降解速率,这表明其在NO降解反应中没有失活.  相似文献   

12.
Prostate cancer is one of the most common cancers among men in the United States. It is also a major leading cause of cancer death among men of all races. In order to treat prostate cancer, drug combinations are often applied. Drug combinations target at different pathways of cells can potentially lead to higher efficacy and lower toxicity due to drug synergy. In this paper, we sequentially applied a two-level design and a follow-up orthogonal array composite design (OACD) to investigate combinations of five anti-cancer drugs, namely, doxorubicin, docetaxel, paclitaxel, cis-dichlorodiamine platinum and dihydroartemisinin. Our initial screening using a two-level full factorial design identified doxorubicin and docetaxel as the most significant drugs. A follow-up experiment with an OACD revealed more complicated drug interactions among these 5 anti-cancer drugs. Quadratic effects of doxorubicin and paclitaxel appeared to be significant. A further investigation on contour plots of all the two-drug pairs indicated that combination of doxorubicin and docetaxel are the most effective companion, while the combination of cis-dichlorodiamine platinum and dihydroartemisinin showed unknown antagonistic effects which diminished the individual drug anti-cancer efficacy. These observations have significant practical implications in the understanding of anti-cancer drug mechanism that can facilitate clinical practice of better drug combinations.  相似文献   

13.
TiO2-based photocatalysis has become a viable technology in various application fields such as (waste)water purification, photovoltaics/artificial photosynthesis, environmentally friendly organic synthesis and remediation of air pollution. Because of the increasing impact of bad air quality worldwide, this review focuses on the use and optimization of TiO2-based photocatalysts for gas phase applications. Over the past years various specific aspects of TiO2 photocatalysis have been reviewed individually. The intent of this review is to offer a broad tutorial on (recent) trends in TiO2 photocatalyst modification for the intensification of photocatalytic air treatment. After briefly introducing the fundamentals of photocatalysis, TiO2 photocatalyst modification is discussed both on a morphological and an electronic level from the perspective of gas phase applications. The main focus is laid on recent developments, but also possible opportunities to the field. This review is intended as a solid introduction for researchers new to the field, as well as a summarizing update for established investigators.  相似文献   

14.
光催化是一种理想的应对全球能源短缺和环境污染问题的绿色化学技术,可以实现有机物降解、水分解和二氧化碳光还原等.光催化反应效率受诸多因素影响,其中光生载流子(电子和空穴)的分离和传输具有至关重要的作用.以往研究表明,构筑多元复合光催化材料体系有利于光生电子和空穴有效分离和传递,促进催化剂表面的还原和氧化反应,从而提高其光催化效率.基于以上考虑,我们提出了一种新型的石墨烯/电气石/TiO2三元复合光催化材料体系,其中TiO2因其价格低廉、无毒和抗光腐蚀等优点而被广泛用作光催化材料;石墨烯(G)拥有独特的二维结构、高的电子迁移率、大的比表面积,是一种优异的催化剂载体;电气石(T)的一个重要性质是表面存在自发极化的静电场,该静电场将会影响光激发载流子的分离、传递和光催化反应过程.利用水热法合成了不同成分的石墨烯/电气石/TiO2三元复合材料体系.为了对比研究石墨烯表面电荷性质的影响,其中一组的石墨烯(氧化石墨)为直接采用改良的Hummers法所制备,其表面带负电;另一组的石墨烯经聚二烯丙基二甲基氯化铵(PDDA)修饰,使其表面带正电.X射线衍射结果显示,三元复合材料中TiO2为锐钛矿相,其结晶性没有因为与石墨烯和电气石的复合而受到影响.扫描和透射电子显微分析表明,TiO2的平均颗粒大小为15 nm左右,并且与石墨烯和电气石均匀复合.傅里叶变换红外光谱和zeta电位表征分析证实,PDDA可以有效地对石墨烯进行功能化改性,使其表面带正电.紫外-可见分光光谱显示,石墨烯/电气石/TiO2三元复合材料与TiO2的吸收带边一致,复合材料中石墨烯和电气石并没有改变TiO2的光吸收特征.光催化降解异丙醇实验表明,石墨烯/电气石/TiO2三元复合材料优于单纯的TiO2、石墨烯/TiO2以及电气石/TiO2二元复合材料,当石墨烯和电气石的质量百分比分别为0.5%和5%时,三元复合材料降解异丙醇产生丙酮的速率达到最高(223μmol/h).特别值得指出的是,由表面带负电的石墨烯组成的复合材料比由带正电荷的PDDA-石墨烯组成的复合材料具有更高的光催化性能,原因如下:在水溶液中显示正zeta电位值的TiO2与带负电的石墨烯/电气石复合物静电吸引而均匀紧密复合,有利于TiO2中光生电子和空穴的快速分离和传递,从而使得石墨烯/电气石/TiO2三元复合材料具有较高的光催化性能;而带正电的PDDA-石墨烯/电气石复合物和TiO2颗粒相互排斥而不宜复合,导致PDDA-石墨烯基复合材料的光催化活性降低.机理研究揭示,在三元复合材料光催化降解异丙醇的反应中起主要作用的是光生电子和空穴.基于以上研究结果,我们提出了三元复合材料光催化降解异丙醇的反应机理.  相似文献   

15.
Three-dimensional (3D) TiO2 hollow structures have attracted much attention due to their unique properties. However, the large bandgap of (3.2 eV) results in the fact that anatase TiO2 photocatalyst can only be excited by UV light, which only accounts for 3–5% of the solar energy. On considering that nobel metallatic nanomaterials can harvest visible light due to surface plasmon resonance (SPR) effect, in this paper, three kinds of Au nanoparticles with different morphologies, namely Au nanospheres (Au-NSs), Au nanorods (Au-NRs) and Au nanopentogons (Au-NPs) were prepared and used as photosensitizers to modified TiO2 hollow nanoboxes (TiO2-HNBs), aiming to explore high efficient visible-light-responsive photocatalyst. The photoreacitivty of Au/TiO2-HNBs was evaluated by photoctalytic oxidation of Rhodamine B (RhB) and NO under visible irradiation (λ > 420 nm). It was found that the visible photoreactivity of TiO2-HNBs was greatly enhanced after modified with Au nanoparticles, and TiO2-HNBs loaded with Au-NRs exhibit the highest visible photocatalytic activity towards both RhB degradation and NO oxidation. Upon visible irradiation, SPR effect induces the production of hot electrons from the Au nanoparticles, which can further transfer to the conduction band of TiO2-HNBs to produce superoxide radicals (O2), resulting in an efficient separation of photo-generated electron-hole pairs. The photoreactivity of Au-NRs/TiO2-HNBs towards RhB degradation almost keeps unchanged even after recycling used for 5 times, indicating that it is promising to be use in practical applications.  相似文献   

16.
Hashemi P  Rahmani Z 《Talanta》2006,68(5):1677-1682
Homocystine was for the first time, chemically linked to a highly cross-linked agarose support (Novarose) to be employed as a chelating adsorbent for preconcentration and AAS determination of nickel in table salt and baking soda. Nickel is quantitatively adsorbed on a small column packed with 0.25 ml of the adsorbent, in a pH range of 5.5–6.5 and simply eluted with 5 ml of a 1 mol l−1 hydrochloric acid solution.

A factorial design was used for optimization of the effects of five different variables on the recovery of nickel. The results indicated that the factors of flow rate and column length, and the interactions between pH and sample volume are significant.

In the optimized conditions, the column could tolerate salt concentrations up to 0.5 mol l−1 and sample volumes beyond 500 ml. Matrix ions of Mg2+ and Ca2+, with a concentration of 200 mg l−1, and potentially interfering ions of Cd2+, Cu2+, Zn2+ and Mn2+, with a concentration of 10 mg l−1, did not have significant effect on the analyte's signal. Preconcentration factors up to 100 and a detection limit of 0.49 μg l−1, corresponding to an enrichment volume of 500 ml, were obtained for the determination of the analyte by flame AAS. Application of the method to the determination of natural and spiked nickel in table salt and baking soda solutions resulted in quantitative recoveries. Direct ETAAS determination of nickel in the same samples was not possible because of a high background observed.  相似文献   


17.
A modified Langmuir–Hinshelwood model based on intrinsic reactions was proposed. Similar to the Langmuir–Hinshelwood model, the modified model predicts that both the reciprocal of reaction rate constant 1/k r and the adsorption rate constant K s are linearly proportional to the reciprocal of the square root of light intensity 1/I 1/2 . The validity of the modified kinetic model was verified with the experimental data of dimethyl phthalate (DMP) degradation.  相似文献   

18.
Del Campo G  Gallego B  Berregi I 《Talanta》2006,68(4):1126-1134
A study has been performed of the conditions for the reaction of histamine with o-phthaldehyde in a flow injection analysis system employing three channels, using an anion-exchange column to eliminate sample matrix interferences. Factorial design was used to determine which operational parameters should be included in the optimization and their optimal values were found. The method developed shows good selectivity for histamine determination in alcoholic beverages. A linear response of up to 2.0 mg l−1 was observed and the detection and quantification limits were 30 and 101 μg l−1, respectively. The repeatability, measured by the R.S.D. for 10 replicate injections, was 0.84 and 0.52% for histamine solutions of 0.20 and 2.0 mg l−1, respectively. The recoveries obtained in wine and cider samples were close to 100% and a sample frequency of 24 samples per hour was achieved.  相似文献   

19.
Well-crystallized iron(III)-doped TiO2 nanopowders with controlled Fe3+ doping concentration and uniform dopant distribution, have been synthesized with plasma oxidative pyrolysis. The photocatalytic reactivity of the synthesized TiO2 nanopowders with a mean particle size of 50-70 nm was quantified in terms of the degradation rates of methyl orange (MO) in aqueous TiO2 suspension under UV (mainly 365 and 316 nm) and visible light irradiation (mainly 405 and 436 nm). The photodecomposition of MO over TiO2 nanopowders followed a distinct two-stage pseudo first order kinetics. Interestingly, the photocatalytic reactivity depends not only on the iron doping concentration but also on the wavelength of the irradiating light. Under UV irradiation, nominally undoped TiO2 had much higher reactivity than Fe3+ -doped TiO2, suggesting that Fe3+ doping (> 0.05 at. %) in TiO2 with a mean particle size of approximately 60 nm was detrimental to the photocatalytic decomposition of methyl orange. Whereas, under visible light irradiation, the Fe3+ -doped TiO2 with an intermediate iron doping concentration of approximately 1 at. % had the highest photocatalytic reactivity due to the narrowing of band gap so that it could effectively absorb the light with longer wavelength. A strategy for improving the photocatalytic reactivity of Fe3+ -doped TiO2 used in the visible light region is also proposed.  相似文献   

20.
光催化可实现污染物降解、分解水制氢和CO2还原等多种氧化还原反应, 因而受到了广泛关注. 光催化材料中光生电荷的数目与氧化还原能力直接影响光催化反应效率, 在许多光催化反应中, 光生空穴氧化反应被认为速控步骤. 以光催化分解水为例, 质子的还原是单电子过程, 水氧化产生氧气则涉及四个电子. 空穴的高能量不仅可赋予其高的氧化能力,还能提高其迁出表面的能力, 因此具有重要研究价值.我们组的前期工作表明, 以TiB2作为前驱体, 采用水热合成和焙烧两步法可制备出间隙硼掺杂的金红石相或锐钛矿相TiO2, 间隙硼掺杂可显著降低价带顶, 提升光催化氧化水产氧性能. 然而, 在已有的结果中, 间隙硼掺杂浓度在TiO2中均呈现从内向外逐渐增加的梯度分布, 这意味着硼掺杂浓度有限, 且表层更低的价带顶不利于体相光生空穴向表面迁移, 因此亟需实现TiO2中均相的间隙硼掺杂.本文以湿化的氩气为水解环境, 将水解过程限域在TiB2的表面以减少硼原子流失; 同时提高水解温度, 使残留的硼原子形成间隙掺杂, 避免其在二次焙烧时扩散, 从而在TiB2核的表面所形成的TiO2壳层中实现均相间隙硼掺杂, 显著提高了光催化氧化水产氧活性. 多种表征结果表明, 直径约为6-10 μm的TiB2核表面形成了厚约400 nm的TiO2壳层, 在TiO2/TiB2中TiO2壳层重量比约为30%, TiO2壳层中锐钛矿相TiO2占比为65 wt%, 金红石相TiO2占比为35 wt%. TiO2壳层中间隙硼为均相分布, 硼掺杂显著降低了价带顶位置, 提高了光生空穴的氧化能力, 从而使得TiB2/TiO2展现出比未掺杂的金红石、锐钛矿相及两者混合相的TiO2均具有更高的光催化氧化水产氧的能力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号