首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
This paper introduces an artificial bee colony heuristic for solving the capacitated vehicle routing problem. The artificial bee colony heuristic is a swarm-based heuristic, which mimics the foraging behavior of a honey bee swarm. An enhanced version of the artificial bee colony heuristic is also proposed to improve the solution quality of the original version. The performance of the enhanced heuristic is evaluated on two sets of standard benchmark instances, and compared with the original artificial bee colony heuristic. The computational results show that the enhanced heuristic outperforms the original one, and can produce good solutions when compared with the existing heuristics. These results seem to indicate that the enhanced heuristic is an alternative to solve the capacitated vehicle routing problem.  相似文献   

2.
The artificial bee colony (ABC) algorithm is a relatively new optimization technique which has been shown to be competitive to other population-based algorithms. However, there is still an insufficiency in the ABC algorithm regarding its solution search equation, which is good at exploration but poor at exploitation. Inspired by differential evolution (DE), we propose a modified ABC algorithm (denoted as ABC/best), which is based on that each bee searches only around the best solution of the previous iteration in order to improve the exploitation. In addition, to enhance the global convergence, when producing the initial population and scout bees, both chaotic systems and opposition-based learning method are employed. Experiments are conducted on a set of 26 benchmark functions. The results demonstrate good performance of ABC/best in solving complex numerical optimization problems when compared with two ABC based algorithms.  相似文献   

3.
To achieve burdening process optimization of copper strips effectively, a nonlinear constrained multi-objective model is established on the principle of the actual burdening. The problem is formulated with two objectives of minimizing the total cost of raw materials and maximizing the amount of waste material thrown into melting furnace. In this paper, a novel approach called “hybrid multi-objective artificial bee colony” (HMOABC) to solve this model is proposed. The HMOABC algorithm is new swarm intelligence based multi-objective optimization technique inspired by the intelligent foraging behavior of honey bees, summation of normalized objective values and diversified selection (SNOV-DS) and nondominated sorting approach. Two test examples were studied and the performance of HMOABC is evaluated in comparison with other nature inspired techniques which includes nondominated sorting genetic algorithm II (NSGAII) and multi-objective particle swarm optimization (MOPSO). The numerical results demonstrate HMOABC approach is a powerful search and optimization technique for burdening optimization of copper strips.  相似文献   

4.
Swarm intelligence is a research branch that models the population of interacting agents or swarms that are able to self-organize. An ant colony, a flock of birds or an immune system is a typical example of a swarm system. Bees’ swarming around their hive is another example of swarm intelligence. Artificial Bee Colony (ABC) Algorithm is an optimization algorithm based on the intelligent behaviour of honey bee swarm. In this work, ABC algorithm is used for optimizing multivariable functions and the results produced by ABC, Genetic Algorithm (GA), Particle Swarm Algorithm (PSO) and Particle Swarm Inspired Evolutionary Algorithm (PS-EA) have been compared. The results showed that ABC outperforms the other algorithms.  相似文献   

5.
This paper presents a novel discrete artificial bee colony (DABC) algorithm for solving the multi-objective flexible job shop scheduling problem with maintenance activities. Performance criteria considered are the maximum completion time so called makespan, the total workload of machines and the workload of the critical machine. Unlike the original ABC algorithm, the proposed DABC algorithm presents a unique solution representation where a food source is represented by two discrete vectors and tabu search (TS) is applied to each food source to generate neighboring food sources for the employed bees, onlooker bees, and scout bees. An efficient initialization scheme is introduced to construct the initial population with a certain level of quality and diversity. A self-adaptive strategy is adopted to enable the DABC algorithm with learning ability for producing neighboring solutions in different promising regions whereas an external Pareto archive set is designed to record the non-dominated solutions found so far. Furthermore, a novel decoding method is also presented to tackle maintenance activities in schedules generated. The proposed DABC algorithm is tested on a set of the well-known benchmark instances from the existing literature. Through a detailed analysis of experimental results, the highly effective and efficient performance of the proposed DABC algorithm is shown against the best performing algorithms from the literature.  相似文献   

6.
Artificial bee colony algorithm (ABC) is a relatively new optimization technique which has been shown to be competitive to other population-based algorithms. However, there is still an insufficiency in ABC regarding its solution search equation, which is good at exploration but poor at exploitation. To address this concerning issue, we propose an improved ABC (IABC) by using a modified search strategy to generate a new food source in order that the exploration and exploitation can be well balanced and satisfactory optimization performances can be achieved. In addition, to enhance the global convergence, when producing the initial population, both opposition-based learning method and chaotic maps are employed. In this paper, the proposed algorithm is applied to control and synchronization of discrete chaotic systems which can be formulated as both multimodal numerical optimization problems with high dimension. Numerical simulation and comparisons with some typical existing algorithms demonstrate the effectiveness and robustness of the proposed approach.  相似文献   

7.
Artificial bee colony (ABC) algorithm invented recently by Karaboga is a biological-inspired optimization algorithm, which has been shown to be competitive with some conventional biological-inspired algorithms, such as genetic algorithm (GA), differential evolution (DE) and particle swarm optimization (PSO). However, there is still an insufficiency in ABC algorithm regarding its solution search equation, which is good at exploration but poor at exploitation. Inspired by PSO, we propose an improved ABC algorithm called gbest-guided ABC (GABC) algorithm by incorporating the information of global best (gbest) solution into the solution search equation to improve the exploitation. The experimental results tested on a set of numerical benchmark functions show that GABC algorithm can outperform ABC algorithm in most of the experiments.  相似文献   

8.
The importance of optimizing machine learning control parameters has motivated researchers to investigate for proficient optimization techniques. In this study, a Swarm Intelligence approach, namely artificial bee colony (ABC) is utilized to optimize parameters of least squares support vector machines. Considering critical issues such as enriching the searching strategy and preventing over fitting, two modifications to the original ABC are introduced. By using commodities prices time series as empirical data, the proposed technique is compared against two techniques, including Back Propagation Neural Network and by Genetic Algorithm. Empirical results show the capability of the proposed technique in producing higher prediction accuracy for the prices of interested time series data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号