首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Asthma is characterized by airway inflammation induced by immune dysfunction to inhaled antigens. Although respiratory viral infections are the most common cause of asthma exacerbation, immunologic mechanisms underlying virus-associated asthma exacerbation are controversial. Clinical evidence indicates that nitric oxide (NO) levels in exhaled air are increased in exacerbated asthma patients compared to stable patients. Here, we evaluated the immunologic mechanisms and the role of NO synthases (NOSs) in the development of virus-associated asthma exacerbation. A murine model of virus-associated asthma exacerbation was established using intranasal challenge with ovalbumin (OVA) plus dsRNA for 4 weeks in mice sensitized with OVA plus dsRNA. Lung infiltration of inflammatory cells, especially neutrophils, was increased by repeated challenge with OVA plus dsRNA, as compared to OVA alone. The neutrophilic inflammation enhanced by dsRNA was partly abolished in the absence of IFN-gamma or IL-17 gene expression, whereas unaffected in the absence of IL-13. In terms of the roles of NOSs, dsRNA-enhanced neutrophilic inflammation was significantly decreased in inducible NOS (iNOS)-deficient mice compared to wild type controls; in addition, this phenotype was inhibited by treatment with a non-specific NOS inhibitor (L-NAME) or an specific inhibitor (1400 W), but not with a specific endothelial NOS inhibitor (AP-CAV peptide). Taken together, these findings suggest that iNOS pathway is important in the development of virus-associated exacerbation of neutrophilic inflammation, which is dependent on both Th1 and Th17 cell responses.  相似文献   

2.
Airway structural changes that occur in patients with asthma in response to persistent inflammation are termed airway remodeling. The cysteinyl leukotrienes (LTC(4), D(4) and E(4)) are known to play important roles in the pathobiology of asthma. To evaluate the effect of low dose montelukast (MK) on the development of airway remodeling using a chronic murine model of allergic airway inflammation with subepithelial fibrosis, BALB/c mice, after intraperitoneal ovalbumin (OVA) sensitization on days 0 and 14, received intranasal OVA periodically on days 14-75. MK treated mice received montelukast sodium intraperitoneally on days 26-75. The OVA sensitized/challenged mice developed an extensive eosinophil cell inflammatory response, goblet cell hyperplasia, mucus occlusion, and smooth muscle hypertrophy of the airways. In addition, in OVA sensitized/challenged mice, dense collagen deposition/fibrosis was seen throughout the lung interstitium surrounding the airways, blood vessels, and alveolar septae. The cysteinyl leukotriene 1 (CysLT1) receptor antagonist, MK significantly reduced the airway eosinophil infiltration, goblet cell hyperplasia, mucus occlusion, and lung fibrosis except airway smooth muscle hypertrophy in the OVA sensitized/challenged mice. The OVA sensitized/challenged mice had significantly increased epithelial desquamation compared with control mice. MK markedly reduced epithelial desquamation of airways in OVA/MK treated animals compared with OVA sensitized/challenged mice. MK treatment did not affect the levels of CysLT in lung tissue. Our results show that the important role of cysteinyl leukotrienes in the pathogenesis of asthma. Lower dose of CysLT1 receptor antagonism has a significant anti-inflammatory effect on allergen-induced lung inflammation and fibrosis but not airway smooth muscle hypertrophy in an animal model of asthma.  相似文献   

3.
T-helper (Th)17 cell responses are important for the development of neutrophilic inflammatory disease. Recently, we found that acetyl salicylic acid (ASA) inhibited Th17 airway inflammation in an asthma mouse model induced by sensitization with lipopolysaccharide (LPS)-containing allergens. To investigate the mechanism(s) of the inhibitory effect of ASA on the development of Th17 airway inflammation, a neutrophilic asthma mouse model was generated by intranasal sensitization with LPS plus ovalbumin (OVA) and then challenged with OVA alone. Immunologic parameters and airway inflammation were evaluated 6 and 48 h after the last OVA challenge. ASA inhibited the production of interleukin (IL)-17 from lung T cells as well as in vitro Th17 polarization induced by IL-6. Additionally, ASA, but not salicylic acid, suppressed Th17 airway inflammation, which was associated with decreased expression of acetyl-STAT3 (downstream signaling of IL-6) in the lung. Moreover, the production of IL-6 from inflammatory cells, induced by IL-17, was abolished by treatment with ASA, whereas that induced by LPS was not. Altogether, ASA, likely via its acetyl moiety, inhibits Th17 airway inflammation by blockade of IL-6 and IL-17 positive feedback.  相似文献   

4.
Gap junction channels formed with connexins directly link to the cytoplasm of adjacent cells and have been implicated in intercellular signaling. Connexin 37 (Cx37) is expressed in the gas-exchange region of the lung. Recently, Cx37 has been reported to be involved in the pathogenesis of inflammatory disease. However, no data are available on the role of Cx37 in allergic airway inflammatory disease. In the present study, we used a murine model of ovalbumin (OVA)- induced allergic airway disease and primary murine epithelial cells to examine the change of Cx37 in allergic airway disease. These mice develop the following typical pathophysiological features of asthma: airway hyperresponsiveness, airway inflammation, and increased IL-4, IL-5, IL-13, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, eotaxin, and RANTES levels in lungs. Cx37 protein and mRNA expression were decreased in OVA-induced allergic airway disease. Immunoreactive Cx37 localized in epithelial layers around the bronchioles in control mice, which dramatically disappeared in allergen-induced asthmatic lungs. Moreover, the levels of Cx37 protein in lung tissues showed significantly negative correlations with airway inflammation, airway responsiveness, and levels of Th2 cytokines in lungs. These findings indicate that change of Cx37 may be associated with the asthma phenotype.  相似文献   

5.
Reactive oxygen species (ROS) play an important role in the pathogenesis of airway inflammation and hyperresponsiveness. Recent studies have demonstrated that antioxidants are able to reduce airway inflammation and hyperreactivity in animal models of allergic airway disease. A newly developed antioxidant, small molecular weight thiol compound, N-acetylcysteine amide (AD4) has been shown to increase cellular levels of glutathione and to attenuate oxidative stress related disorders such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. However, the effects of AD4 on allergic airway disease such as asthma are unknown. We used ovalbumin (OVA)-inhaled mice to evaluate the role of AD4 in allergic airway disease. In this study with OVA-inhaled mice, the increased ROS generation, the increased levels of Th2 cytokines and VEGF, the increased vascular permeability, the increased mucus production, and the increased airway resistance in the lungs were significantly reduced by the administration of AD4. We also found that the administration of AD4 decreased the increases of the NF-kappaB and hypoxia-inducible factor-1alpha (HIF-1alpha) levels in nuclear protein extracts of lung tissues after OVA inhalation. These results suggest that AD4 attenuates airway inflammation and hyperresponsiveness by regulating activation of NF-kappaB and HIF-1alpha as well as reducing ROS generation in allergic airway disease.  相似文献   

6.
Mast cells are well recognized as key cells in allergic reactions, such as asthma and allergic airway diseases. However, the effects of mast cells and TNF-α on T-helper type 2 (Th2) cytokine-dependent asthma are not clearly understood. Therefore, an aim of this study was to investigate the role of mast cells on Th2 cytokine-dependent airway hyperresponsiveness and inflammation. We used genetically mast cell-deficient WBB6F1/J-Kitw/Kitw-v (W/Wv), congenic normal WBB6F1/J-Kit+/Kit+ (+/+), and mast cell-reconstituted W/Wv mouse models of allergic asthma to investigate the role of mast cells in Th2 cytokine-dependent asthma induced by ovalbumin (OVA). And we investigated whether the intratracheal injection of TNF-α directly induce the expression of ICAM-1 and VCAM-1 in W/Wv mice. This study, with OVA-sensitized and OVA-challenged mice, revealed the following typical histopathologic features of allergic diseases: increased inflammatory cells of the airway, airway hyperresponsiveness, and increased levels of TNF-α, intercellular adhesion molecule (ICAM)-1, and vascular cellular adhesion molecule (VCAM)-1. However, the histopathologic features and levels of ICAM-1 and VCAM-1 proteins in W/Wv mice after OVA challenges were significantly inhibited. Moreover, mast cell-reconstituted W/Wv mice showed restoration of histopathologic features and recovery of ICAM-1 and VCAM-1 protein levels that were similar to those found in +/+ mice. Intratracheal administration of TNF-α resulted in increased ICAM-1 and VCAM-1 protein levels in W/Wv mice. These results suggest that mast cells play a key role in a Th2 cytokine-dependent asthma model through production of adhesion molecules, including ICAM-1 and VCAM-1, by liberation of TNF-α.  相似文献   

7.
BackgroundAllergic asthma is a inflammatory disease defined as a condition of chronic airway inflammation. Asthma can be provoked by various stimuli like allergens inhalation like dust particles, pollen, and pollutants in the air.ObjectiveThis exploration was dedicated to investigate the anti-asthmatic properties of tilianin against the ovalbumin (OVA)-initiated asthma in mice.MethodologyThe asthma was provoked to the mice via administering 100 μl of aluminum hydroxide containing 20 μg of OVA and treated with the 10 and 20 mg/kg of tilianin, respectively. The levels of Th2 cytokines, OVA-specific IgE, eotaxin, pro-inflammatory mediators, antioxidants, and other markers were inspected by marker specific assay kits. The mRNA expressions of TGF-β1, Smad, iNOS, and COX-2 was assessed using RT-PCR analysis. The lung histology was analyzed microscopically to detect the histological changes.ResultsTilianin treatment remarkably suppressed the IL-4, IL-5, and IL-13, IFN-γ, eotaxin, and IgE levels. The NO, MPO, and inflammatory makers TNF-α, IL-6, IL-12, and TXB2 was substantially diminished by the tilianin treatment. The TGF-β1, iNOS, and COX-2 expressions were appreciably suppressed by the tilianin. The histological findings proved that the tilianin treatment alleviated the OVA-provoked histopathological changes in the lung tissues.ConclusionOur findings proved that tilianin effectively alleviated the OVA-provoked asthma in animals and it could be a talented anti-asthmatic candidate.  相似文献   

8.
Airway remodeling is a key characteristic of chronic asthma, particularly in patients with a fixed airflow limitation. The mechanisms underlying airway remodeling are poorly understood, and no therapeutic option is available. The Wnt/β-catenin signaling pathway is involved in various physiological and pathological processes, including fibrosis and smooth muscle hypertrophy. In this study, we investigated the roles of Wnt/β-catenin signaling in airway remodeling in patients with asthma. Wnt7a mRNA expression was prominent in induced sputum from patients with asthma compared with that from healthy controls. Next, we induced a chronic asthma mouse model with airway remodeling features, including subepithelial fibrosis and airway smooth muscle hyperplasia. Higher expression of Wnt family proteins and β-catenin was detected in the lung tissue of mice with chronic asthma compared to control mice. Blocking β-catenin expression with a specific siRNA attenuated airway inflammation and airway remodeling. Decreased subepithelial fibrosis and collagen accumulation in the β-catenin siRNA-treated mice was accompanied by reduced expression of transforming growth factor-β. We further showed that suppressing β-catenin in the chronic asthma model inhibited smooth muscle hyperplasia by downregulating the tenascin C/platelet-derived growth factor receptor pathway. Taken together, these findings demonstrate that the Wnt/β-catenin signaling pathway is highly expressed and regulates the development of airway remodeling in chronic asthma.  相似文献   

9.
We have tested the hypothesis that exposure to ultraviolet light would inhibit T helper-1 (Th1) responses and stimulate T helper-2 (Th2) responses, and that thus in a mouse model of allergic (i.e. extrinsic) asthma (using ovalbumin [OVA] as the allergen) increased symptoms would be observed, while in a model of Th1-dependent occupational asthma (in which picryl chloride is the allergen) decreased symptoms would be observed. Whereas reduced interferon (IFN)-gamma production, decreased inflammatory responses in the airways, and reduced airway reactivity to nonspecific stimuli were observed in UV-preexposed picryl chloride sensitized and challenged mice, the results in the OVA model were less clear. Increased interleukin (IL)-10 production as a result of UV exposure was observed, together with unchanged IL-4 and IFN-gamma. In addition, decreased OVA-specific immunoglobin, IgG1 and IgE, titers were noted, as well as decreased nonspecific airway hyperreactivity. Eosinophilic inflammatory responses were not influenced. The results indicate that UV exposure can have systemic effects that influence ongoing immune responses in the respiratory tract. The effects are not only restricted to immune responses that are predominantly Th1 dependent (i.e. pulmonary delayed-type hypersensitivity and IFN-gamma production in response to picryl chloride) but also to immune response that are predominantly Th2 dependent, i.e. decreased specific IgE titers.  相似文献   

10.
To determine the impact of IL-23 knockdown by RNA interference on the development and severity of ovalbumin (OVA)-induced asthmatic inflammation, and the potential mechanisms in mice, the IL-23-specific RNAi-expressing pSRZsi-IL-23p19 plasmid was constructed and inhaled into OVA-sensitized mice before each challenge, as compared with that of control mice treated with alum or budesonide. Inhalation of the pSRZsi-IL-23p19, significantly reduced the levels of OVA-challenge induced IL-23 in the lung tissues by nearly 75%, determined by RT-PCR. In addition, knockdown of IL-23 expression dramatically reduced the numbers of eosinophils and neutrophils in BALF and mitigated inflammation in the lungs of asthmatic mice. Furthermore, knockdown of IL-23 expression significantly decreased the levels of serum IgE, IL-23, IL-17, and IL-4, but not IFNgamma, and its anti-inflammatory effects were similar to or better than that of treatment with budesonide in asthmatic mice. Our data support the notion that IL-23 and associated Th17 responses contribute to the pathogenic process of bronchial asthma. Knockdown of IL-23 by RNAi effectively inhibits asthmatic inflammation, which is associated with mitigating the production of IL-17 and IL-4 in asthmatic mice.  相似文献   

11.
The EGFR plays an essential role in goblet cell hyperplasia and mucus hypersecretion. EGFR has an intrinsic tyrosine kinase activity that, when activated, induces the production of MUC5AC through the signaling kinase cascade in the airway epithelium. We have investigated the effects of an EGFR tyrosine kinase inhibitor, gefitinib, on ovalbumin (OVA)-induced, allergic inflammation in airway epithelia of mice. OVA-sensitized mice were pretreated with gefitinib at two different doses (12.5 and 50 mg/kg) and then challenged with OVA. The OVA challenge increased the total cell count and eosinophil count in bronchoalveolar lavage fluid (BALF), as well as the concentrations of T-helper2 (Th2) cytokines, such as IL-4 and IL-13, overall eosinophil recruitment in the lung tissue and airway hyperresponsiveness (AHR). Pretreatment with gefitinib reduced the inflammatory cell counts and released cytokine concentrations (IL-4 and IL-13) in BALF, as well as eosinophil recruitment in the lungs and AHR, in a dose-dependent manner. This was associated with decreased EGFR and Akt phosphorylation. We showed that gefinitib inhibits EGFR and phosphoinositol 3'-kinase (PI3K)/Akt activation which were activated in OVA sensitized mice. These findings suggest that inhibitors of the EGFR cascade may have a role in the treatment of asthma.  相似文献   

12.
Although some studies have explained the immunomodulatory effects of statins, the exact mechanisms and the therapeutic significance of these molecules remain to be elucidated. This study not only evaluated the therapeutic potential and inhibitory mechanism of simvastatin in an ovalbumin (OVA)-specific asthma model in mice but also sought to clarify the future directions indicated by previous studies through a thorough review of the literature. BALB/c mice were sensitized to OVA and then administered three OVA challenges. On each challenge day, 40 mg kg−1 simvastatin was injected before the challenge. The airway responsiveness, inflammatory cell composition, and cytokine levels in bronchoalveolar lavage (BAL) fluid were assessed after the final challenge, and the T cell composition and adhesion molecule expression in lung homogenates were determined. The administration of simvastatin decreased the airway responsiveness, the number of airway inflammatory cells, and the interleukin (IL)-4, IL-5 and IL-13 concentrations in BAL fluid compared with vehicle-treated mice (P<0.05). Histologically, the number of inflammatory cells and mucus-containing goblet cells in lung tissues also decreased in the simvastatin-treated mice. Flow cytometry showed that simvastatin treatment significantly reduced the percentage of pulmonary CD4+ cells and the CD4+/CD8+ T-cell ratio (P<0.05). Simvastatin treatment also decreased the expression of the vascular cell adhesion molecule 1 and intercellular adhesion molecule 1 proteins, as measured in homogenized lung tissues (P<0.05) and human epithelial cells. The reduction in the T cell influx as a result of the decreased expression of cell adhesion molecules is one of the mechanisms by which simvastatin attenuates airway responsiveness and allergic inflammation. Rigorous review of the literature together with our findings suggested that simvastatin should be further developed as a potential therapeutic strategy for allergic asthma.  相似文献   

13.
This systematic review aimed to evaluate the potential anti-inflammatory effect of Rosmarinus officinalis in preclinical in vivo models of inflammation. A search was conducted in the databases PubMed, Scopus, and Web of Science, with related keywords. The inclusion criteria were inflammation, plant, and studies on rats or mice; while, the exclusion criteria were reviews, studies with in vitro models, and associated plants. The predominant animal models were paw edema, acute liver injury, and asthma. Rosemary was more commonly used in its entirety than in compounds, and the prevalent methods of extraction were maceration and hydrodistillation. The most common routes of administration reported were gavage, intraperitoneal, and oral, on a route-dependent dosage. Treatment took place daily, or was single-dose, on average for 21 days, and it more often started before the induction. The most evaluated biomarkers were tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-10, myeloperoxidase (MPO), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx), malondialdehyde (MDA), and superoxide dismutase (SOD). The best results emerged at a dose of 60 mg/kg, via IP of carnosic acid, a dose of 400 mg/kg via gavage of Rosmarinus officinalis, and a dose of 10 mg/kg via IP of rosmarinic acid. Rosmarinus officinalis L. showed anti-inflammatory activity before and after induction of treatments.  相似文献   

14.
Cicadae Periostracum (CP), derived from the slough of Cryptotympana pustulata, has been used as traditional medicine in Korea and China because of its diaphoretic, antipyretic, anti-inflammatory, antioxidant, and antianaphylactic activities. The major bioactive compounds include oleic acid (OA), palmitic acid, and linoleic acid. However, the precise therapeutic mechanisms underlying its action in asthma remain unclear. The objective of this study was to determine the antiasthmatic effects of CP in an ovalbumin (OVA)-induced asthmatic mouse model. CP and OA inhibited the inflammatory cell infiltration, airway hyperresponsiveness (AHR), and production of interleukin (IL)7 and Th2 cytokines (IL-5) in the bronchoalveolar lavage fluid and OVA-specific imunoglobin E (IgE) in the serum. The gene expression of IL-5, IL-13, CCR3, MUC5AC, and COX-2 was attenuated in lung tissues. CP and OA might inhibit the nuclear translocation of GATA-binding protein 3 (GATA-3) and retinoic acid receptor-related orphan receptor γt (RORγt) via the upregulation of forkhead box p3 (Foxp3), thereby preventing the activation of GATA-3 and RORγt. In the in vitro experiment, a similar result was observed for Th2 and GATA-3. These results suggest that CP has the potential for the treatment of asthma via the inhibition of the GATA-3/Th2 and IL-17/RORγt signaling pathways.  相似文献   

15.
IL-4 and IL-13 are closely related cytokines that are produced by Th2 cells. However, IL-4 and IL-13 have different effects on the development of asthma phenotypes. Here, we evaluated downstream molecular mechanisms involved in the development of Th2 type asthma phenotypes. A murine model of Th2 asthma was used that involved intraperitoneal sensitization with an allergen (ovalbumin) plus alum and then challenge with ovalbumin alone. Asthma phenotypes, including airway-hyperresponsiveness (AHR), lung inflammation, and immunologic parameters were evaluated after allergen challenge in mice deficient in candidate genes. The present study showed that methacholine AHR and lung inflammation developed in allergen-challenged IL-4-deficient mice but not in allergen-challenged IL-13-deficient mice. In addition, the production of OVA-specific IgG2a and IFN-γ-inducible protein (IP)-10 was also impaired in the absence of IL-13, but not of IL-4. Lung-targeted IFN-γ over-expression in the airways enhanced methacholine AHR and non-eosinophilic inflammation; in addition, these asthma phenotypes were impaired in allergen-challenged IFN-γ-deficient mice. Moreover, AHR, non-eosinophilic inflammation, and IFN-γ expression were impaired in allergen-challenged IL-12Rβ2- and STAT4-deficient mice; however, AHR and non-eosinophilic inflammation were not impaired in allergen-challenged IL-4Rα-deficient mice, and these phenomena were accompanied by the enhanced expression of IL-12 and IFN-γ. The present data suggest that IL-13-mediated asthma phenotypes, such as AHR and non-eosinophilic inflammation, in the Th2 type asthma are dependent on the IL-12-STAT4-IFN-γ axis, and that these asthma phenotypes are independent of IL-4Ralpha-mediated signaling.  相似文献   

16.
17.
The main purpose of this study was to investigate whether the blockade of the interaction between the receptor activator of nuclear factor-κB (NF-ĸB) ligand (RANKL) and its receptor RANK as well as the blockade of NF-κB inhibitor kinase (IKK) and of NF-κB translocation have the potential to suppress the pathogenesis of allergic asthma by inhibition and/or enhancement of the production by CD4+ and CD8+ T cells of important cytokines promoting (i.e., IL-4 and IL-17) and/or inhibiting (i.e., IL-10 and TGF-β), respectively, the development of allergic asthma. Studies using ovalbumin(OVA)-immunized mice have demonstrated that all the tested therapeutic strategies prevented the OVA-induced increase in the absolute number of IL-4- and IL-17-producing CD4+ T cells (i.e., Th2 and Th17 cells, respectively) indirectly, i.e., through the inhibition of the clonal expansion of these cells in the mediastinal lymph nodes. Additionally, the blockade of NF-κB translocation and RANKL/RANK interaction, but not IKK, prevented the OVA-induced increase in the percentage of IL-4-, IL-10- and IL-17-producing CD4+ T cells. These latter results strongly suggest that both therapeutic strategies can directly decrease IL-4 and IL-17 production by Th2 and Th17 cells, respectively. This action may constitute an important mechanism underlying the anti-asthmatic effect induced by the blockade of NF-κB translocation and of RANKL/RANK interaction. Thus, in this context, both these therapeutic strategies seem to have an advantage over the blockade of IKK. None of the tested therapeutic strategies increased both the absolute number and frequency of IL-10- and TGF-β-producing Treg cells, and hence they lacked the potential to inhibit the development of the disease via this mechanism.  相似文献   

18.
Reactive oxygen species (ROS) performs a pivotal function as a signaling mediator in receptor-mediated signaling. However, the sources of ROS in this signaling have yet to be determined, but may include lipoxygenases (LOXs) and NADPH oxidase. The stimulation of lymphoid cells with TNF-alpha, IL-1beta, and LPS resulted in significant ROS production and NF-kappaB activation. Intriguingly, these responses were markedly abolished via treatment with the LOXs inhibitor nordihydroguaiaretic acid (NDGA). We further examined in vivo anti-inflammatory effects of NDGA in allergic airway inflammation. Both intraperitoneal and intravenous NDGA administration attenuated ovalbumin (OVA)-induced influx into the lungs of total leukocytes, as well as IL-4, IL-5, IL-13, and TNF-alpha levels. NDGA also significantly reduced serum levels of OVA-specific IgE and suppressed OVA-induced airway hyperresponsiveness to inhaled methacholine. The results of our histological studies and flow cytometric analyses showed that NDGA inhibits OVA-induced lung inflammation and the infiltration of CD11b+ macrophages into the lung. Collectively, our findings indicate that LOXs performs an essential function in pro-inflammatory signaling via the regulation of ROS regulation, and also that the inhibition of LOXs activity may have therapeutic potential with regard to the treatment of allergic airway inflammation.  相似文献   

19.
Allergic rhinitis (AR) is a highly prevalent allergic disease induced by immunoglobulin (Ig) E-mediated hypersensitivity reaction at the nasal epithelium against inhaled allergens. Previous studies have demonstrated that Pentaherbs formula (PHF), a modified herbal formula comprising five herbal medicines (Flos Lonicerae, Herba Menthae, Cortex Phellodendri, Cortex Moutan and Rhizoma Atractylodis), could suppress various immune effector cells to exert anti-inflammatory and anti-allergic effects in allergic asthma and atopic dermatitis. The present study aimed to further determine the anti-inflammatory activities of PHF in an ovalbumin (OVA)-induced AR BALB/c mouse model. Nasal symptoms such as sneezing and nose rubbing were recorded and the serum total IgE and OVA-specific IgG1, as well as interleukin (IL)-4, IL-5, IL-10, IL-13, chemokines CXCL9 CXCL10, and tumor necrosis factor (TNF)-α concentrations in nasal lavage fluid (NALF) were measured during different treatments. Effects of PHF on the expression of inflammatory mediators in the sinonasal mucosa were quantified using real-time QPCR. PHF was found to suppress allergic symptoms, infiltration of inflammatory cells, and hyperplasia of goblet cells in the nasal epithelium of the OVA-induced AR mice. PHF could reduce OVA-specific IgG1 level in serum, and TNF-α and IL-10 in nasal lavage fluid (NALF), significantly up-regulate the splenic regulatory T (Treg) cell level, increase the Type 1 helper T cell (Th1)/Type 2 helper T cell (Th2) ratio, and reduce the Th17 cells (all p < 0.05). PHF could also alleviate in situ inflammation in sinonasal mucosa of OVA-induced AR mice. In conclusion, oral treatment of PHF showed immuno-modulatory activities in the OVA-induced AR mice by regulating the splenic T cell population to suppress the nasal allergy symptoms and modulating inflammatory mediators, implicating that PHF could be a therapeutic strategy for allergic rhinitis.  相似文献   

20.
Mast cells (MCs) are an important treatment target for high-affinity IgE Fc receptor (FcεRI)-mediated allergic diseases. The plant-derived molecule 4-methylumbelliferone (4-MU) has beneficial effects in animal models of inflammation and autoimmunity diseases. The aim of this study was to examine 4-MU effects on MC activation and probe the underlying molecular mechanism(s). We sensitized rat basophilic leukemia cells (RBLs) and mouse bone marrow-derived mast cells (BMMCs) with anti-dinitrophenol (DNP) immunoglobulin (Ig)E antibodies, stimulated them with exposure to DNP-human serum albumin (HSA), and then treated stimulated cells with 4-MU. Signaling-protein expression was determined by immunoblotting. In vivo allergic responses were examined in IgE-mediated passive cutaneous anaphylaxis (PCA) and ovalbumin (OVA)-induced active systemic anaphylaxis (ASA) mouse models. 4-MU inhibited β-hexosaminidase activity and histamine release dose-dependently in FcεRI-activated RBLs and BMMCs. Additionally, 4-MU reduced cytomorphological elongation and F-actin reorganization while down-regulating IgE/Ag-induced phosphorylation of SYK, NF-κB p65, ERK1/2, p38, and JNK. Moreover, 4-MU attenuated the PCA allergic reaction (i.e., less ear thickening and dye extravasation). Similarly, we found that 4-MU decreased body temperature, serum histamine, and IL4 secretion in OVA-challenged ASA model mice. In conclusion, 4-MU had a suppressing effect on MC activation both in vitro and in vivo and thus may represent a new strategy for treating IgE-mediated allergic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号