首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A simple, rapid, sensitive and accurate spectrophotometric method for the determination of captopril in pure form and pharmaceutical formulations is developed. The procedure is based on the reaction of copper(II) with captopril in the presence of neocuproine (NC) (2,9-dimethyl-1,10-phenanthroline) reagent in acetate buffer at pH 5.0. Copper(II) is reduced easily by captopril to Cu(I)–neocuproine complex, which shows an absorption maximum at 448 nm. Beer’s law was obeyed in the concentration range 0.3–3.0 μg mL?1 with a minimum detection limit (LOD) of 0.039 μg mL?1 and a quantification limit (LOQ) of 0.129 μg mL?1. For more accurate results, Ringbom optimum concentration ranges was 0.5–2.7 μg mL?1. The apparent molar absorbtivity and Sandell sensitivity were calculated. The validity of the proposed method was tested by analyzing the pure and pharmaceutical formulations and compared well with those obtained by the official method and demonstrated good accuracy and precision.  相似文献   

2.
A highly sensitive, selective and rapid method for the determination of cobalt based on the rapid reaction of cobalt(II) with 5-(2-benzothiazolylazo)-8-hydroxyquinolene BTAHQ and the solid phase extraction of the Co(II)-BTAHQ complex with C18 membrane disks were developed. In the presence of pH = 6.4 buffer solution and cetylpyridenium chloride (CPC) medium, BTAHQ reacts with cobalt to form a deep violet complex with a molar ratio of 1:1 (cobalt to BTAHQ). This complex was enriched by the solid phase extraction with C18 membrane disks. An enrichment factor of 100 was obtained by elution of the complex from the disks with a minimal amount of isopentyl alcohol. In isopentyl alcohol medium, the molar absorptivity of the complex is 2.42 × 105 L mol−1 cm−1 at 658 nm. Beer’s law is obeyed in the range of 0.01–0.38 μg mL−1 in the measured solution. The relative standard deviation for 11 replicate samples of 0.20 μg mL−1 level is 1.37%. The detection and quantification limits reach 3.1 and 9.7 ng mL−1 in the original samples. This method was applied for the determination of cobalt in biological, water, soil and pharmaceutical preparation samples with good results.  相似文献   

3.
Baccharis trimera commonly named ‘carqueja’, is wide-spread in South America and are used as raw material for herbal medicines. A reversed-phase liquid chromatography (RP-LC) method coupled to diode array detector was developed for the analysis of caffeoylquinic acids (CQAs), the main compounds responsible for its digestive activity. The identity of the quinic acids was established by mass spectrometry and were them: 5-O-[E]-caffeoylquinic acid, 3,4-O-[E]-dicaffeoylquinic acid, 3,5-O-[E]-dicaffeoylquinic acid, 4,5-O-[E]-dicaffeoylquinic acid and a tricaffeoylquinic acid. The RP-LC method for the quantitation of the caffeoylquinic acids was validated according to ICH guidelines, based on the following parameters: linearity, selectivity, robustness, limits of detection and quantification, precision and recovery. Hydroalcoholic extracts were prepared by the maceration of the plant material with ethanol:water 1:1 (v/v) in a 0.1:25 g mL?1 plant:solvent ratio in a water bath at 40 °C. Validation data indicated that the HPLC method proposed is suitable for the analysis of caffeoylquinic acids in B. trimera raw material. The results of the LOD and LOQ analyses for the 5-CQA were 4.1 μg mL?1 and 12.5 μg mL?1, respectively, 1.3 μg mL?1, 3.9 μg mL?1 for 4,5-diCQA and 1.7 μg mL?1, 5.1 μg mL?1 for triCQA. The levels of total CQAs ranged from 2.1 to 4.0 g% (w/w). The influence of season harvest and site collection was also evaluated and variations were observed in the results and can be related to phonologic phase, different locations, seasons and soil. Long term and photostability of plant material were carried out and was observed a stable behavior during the time of the experiments.  相似文献   

4.
A simple and sensitive kinetic method was described for the determination of hyoscine butylbromide in pharmaceutical preparations. The method is based upon a kinetic investigation of the oxidation reaction of the drug with alkaline potassium permanganate at room temperature for a fixed time of 15 min. The absorbance of the colored manganate ion was measured at 610 nm. The absorbance–concentration plot was rectilinear over the range of 1.0–10 μg mL?1 (r = 0.9999) and detection limit of 0.092 μg mL?1. The concentration of hyoscine butylbromide was calculated using the corresponding calibration equation for the fixed-time method. The determination of hyoscine butylbromide by the fixed-concentration and rate constant methods is also feasible with the calibration equations obtained but the fixed-time method has been found to be more applicable. The different experimental parameters affecting the development and stability of the colors were carefully studied and optimized. The proposed method was applied to the determination of hyoscine butylbromide in pharmaceutical formulations. The results obtained were in good agreement with those obtained using the official British Pharmacopeial method (2004).  相似文献   

5.
Highly luminescent LaF3:Ce3+/Tb3+ nanocrystals were successfully prepared and surface functionalized via Layer-by-Layer technology. These as-prepared nanocrystals are highly resistant to photobleaching and pretty dispersible in aqueous solution. Due to the efficient luminescence quenching of the nanocrystals by nucleic acids, a facile fluorescence quenching method was developed for the detection of trace amount of nucleic acids. Under optimal conditions, the fluorescence intensity was proportional to the DNA concentration over the range of 0.60–25.0 μg mL?1 for calf thymus DNA (ct-DNA) and 0.60–30.0 μg mL?1 for herring sperm DNA (hs-DNA), respectively. The corresponding detection limit is 0.21 μg mL?1 for ct-DNA and 0.31 μg mL?1 for hs-DNA, respectively. The results indicated that the reported method is simple and rapid with wide linear range. Also, the recovery and relative standard deviation of this method are reasonable and satisfactory.  相似文献   

6.
Mucin 4 (MUC4) is a useful biomarker for endometriosis and cancers of the pancreas, esophagus and breast. The very first electrochemical immunosensor for the detection of MUC4 is reported, using carbon-based screen-printed electrodes modified by reaction with the diazonium salt of p-aminophenylacetic acid. Electrochemical impedance spectroscopy and cyclic voltammetry were used to characterize and optimize the electrografting process. The in situ surface modification through diazotation with phenylacetic groups enables the chemical binding of the specific antibody, followed by its affinity reaction with MUC4. The immunosensor was optimized with respect to several parameters and is very promising for clinical applications, having a limit of detection of 0.33 μg mL 1 and a linear domain between 1 and 15 μg mL 1 obtained by electrochemical impedance spectroscopy measurements.  相似文献   

7.
Electrochemical oxidation of thermally denatured single-stranded DNA (ssDNA) was studied on a room temperature ionic liquid N-butylpyridinium hexafluorophosphate (BPPF6) modified carbon paste electrode (IL-CPE). A distinct oxidation peak appeared at +0.772 V (vs. SCE) on the IL-CPE after preconcentration of ssDNA at +0.35 V for 160 s in pH 7.0 phosphate buffer solution (PBS), which was attributed to the oxidation of guanine residue on the ssDNA molecular structure. The results showed an apparent negative shift of the oxidation peak potential and a great enhancement of the oxidation peak current on the IL-CPE compared with that of CPE. The electrochemical parameters of ssDNA on the IL-CPE were further calculated. Under the selected conditions, a linear calibration curve for ssDNA detection was obtained in the concentration range from 10.0 to 110.0 μg mL−1 with the detection limit of 1.5 μg mL−1(3σ).  相似文献   

8.
Chemical speciation [Sb(V) and Sb(III)] affects the mobility, bioavailability and toxicity of antimony. In oxygenated environments Sb(V) dominates whereas thermodynamically unstable Sb(III) may occur. In this study, a simple method for the determination of Sb(III) in non acidic, oxygenated water contaminated with antimony is proposed. The determination of Sb(III) was performed by anodic stripping voltammetry (ASV, 1–20 μg L−1 working range), the total antimony, Sb(tot), was determined either by inductively coupled plasma mass spectrometry (ICP-MS, 1–100 μg L−1 working range) or inductively coupled plasma optical emission spectrometry (ICP-OES, 100–10,000 μg L−1 working range) depending on concentration. Water samples were filtered on site through 0.45 μm pore size filters. The aliquot for determination of Sb(tot) was acidified with 1% (v/v) HNO3. Different preservatives, namely HCl, L(+) ascorbic acid or L(+) tartaric acid plus HNO3, were used to assess the stability of Sb(III) in synthetic solutions.The method was tested on groundwater and surface water draining the abandoned mine of Su Suergiu (Sardinia, Italy), an area heavily contaminated with Sb. The waters interacting with Sb-rich mining residues were non acidic, oxygenated, and showed extreme concentrations of Sb(tot) (up to 13,000 μg L−1), with Sb(III) <10% of total antimony. The stabilization with L(+) tartaric acid plus HNO3 appears useful for the determination of Sb(III) in oxygenated, Sb-rich waters. Due to the instability of Sb(III), analyses should be carried out within 7 days upon the water collection. The main advantage of the proposed method is that it does not require time-consuming preparation steps prior to analysis of Sb(III).  相似文献   

9.
A simple and sensitive kinetic spectrophotometric method for the quantitative analysis of pravastatin sodium (PVS) in pure and pharmaceutical formulations has been described. The method is based on the formation of colored product between PVS and 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) in acetone medium at 55 ± 2 °C. The reaction is followed spectrophotometrically by measuring the increase in absorbance at 462 nm as a function of time. The initial rate and fixed time methods were adopted for constructing the calibration curves. The linearity ranges were found to be 15.0–50.0 and 10.0–70.0 μg mL?1 for initial rate and fixed time methods, respectively. The limits of detection for initial rate and fixed time methods are 0.029 and 0.086 μg mL?1, respectively. Both methods have been applied successfully for the estimation of PVS in commercial dosage forms with no interference from the excipients. The results are compared with the HPLC pharmacopoeial method.  相似文献   

10.
The object of this work is to develop a simple and selective method for efficient extraction of Au(III) ions in aqueous solution using a new solid-phase extraction sorbent. Polyethylenimine (PEI) ion-exchange polymer was coated on alumina in the presence of NaNO3. The method is based on sorption of Au3+ ions on 50 mg PEI/Al2O3. A solution of 0.5 M thiourea, then 1.0 M HCl effectively eluted the gold ion and then aspirated into flame atomic absorption spectroscopy (FAAS). The influence of flow rate of sample solution and eluent, the pH effect, eluent type and sorption capacity was investigated. The effects of various diverse ions for preconcentration and separation of the gold ion were investigated. Relative standard deviation of 4.0 μg mL−1 of gold was 1.46% (n = 10). The detection limit was 26.2 ng L−1 in original solution. The method has been applied successfully for the recovery of trace amount of Au(III) ions from water samples.  相似文献   

11.
Analytical performances of metal coated slotted quartz tube flame atomic absorption spectrometry (SQT-FAAS) and slotted quartz tube in situ atom trapping flame atomic absorption spectrometry (SQT-AT-FAAS) systems were evaluated for determination of Bi. Non-volatile elements such as Mo, Zr, W and Ta were tried as coating materials. It was observed that W-coated SQT gave the best sensitivity for the determination of Bi for SQT-FAAS and SQT-AT-FAAS. The parameters for W-coated SQT-FAAS and W-coated SQT-AT-FAAS were optimized. Sensitivity of FAAS for Bi was improved as 4.0 fold by W-coated SQT-FAAS while 613 fold enhancement in sensitivity was achieved by W-coated SQT-AT-FAAS using 5.0 min trapping with respect to conventional FAAS. MIBK was selected as organic solvent for the re-atomization of Bi from the trapping surface. Limit of detection values for W-coated SQT-FAAS and W-coated SQT-AT-FAAS was obtained as 0.14 μg mL 1 and 0.51 ng mL 1, respectively. Linear calibration plot was obtained in the range of 2.5–25.0 ng mL 1 for W-coated SQT-AT-FAAS. Accuracy of the W-coated SQT-AT-FAAS system was checked by analyzing a standard reference material, NIST 1643e.  相似文献   

12.
In this work, the potential of modified multiwalled carbon nanotubes for separation and preconcentration of trace amounts of manganese ion is studied. Multiwalled carbon nanotubes were oxidized with concentrated HNO3 and then modified with loading 1-(2-pyridylazo)-2-naphtol. Mn(II) ions could be quantitatively retained by modified multiwalled carbon nanotubes in the pH range of 8–9.5. Elution of the adsorbed manganese was carried out with 5.0 mL of 0.1 mol L?1 HNO3. Detection limit is 0.058 ng mL?1 and analytical curve is linear in the range of 0.1 ng mL?1–5.0 μg mL?1 in the initial solution with a correlation coefficient 0.9977 and the preconcentration factor is 100. Relative standard deviation for eight replicate determination of 0.5 μg mL?1 of manganese in the final solution is 0.41%. The effects of the experimental parameters, including the sample pH, flow rates of sample and eluent solution, eluent type, breakthrough volume and interference ions, were studied for preconcentration of Mn(II) ions in detail to optimize the conditions. The method was successfully applied for separation, preconcentration and determination of manganese in different samples.  相似文献   

13.
Air quality in the metropolitan region of Rio de Janeiro was evaluated by analysis of particulate matter (PM) in industrial (Santa Cruz) and rural (Seropédica) areas. Total suspended particles (TSP) and fine particulate matter (PM2.5) collected in filters over 24 h were quantified and their chemical composition determined. TSP exceeded Brazilian guidelines (80 μg m 3) in Santa Cruz, while PM2.5 levels exceeded the World Health Organization guidelines (10 μg m 3) in both locations. Filters were extracted with water and/or HNO3, and the concentrations of 20 elements, mostly metals, were determined by inductively coupled plasma mass spectrometry (ICP-MS) and optical emission spectrometry (ICP OES). Water soluble inorganic anions were determined by ion chromatography (IC). To estimate the proportion of these elements extracted, a certified reference material (NIST SRM 1648a, Urban Dust) was subjected to the same extraction process. Concordant results were obtained by ICP-MS and ICP OES for most elements. Some elements could not be quantified by both techniques; the most appropriate technique was chosen in each case. The urban dust was also analyzed by the United States Environmental Protection Agency (US EPA) method, which employs a combination of hydrochloric and nitric acids for the extraction, but higher extraction efficiency was obtained when only nitric acid was employed. The US EPA method gave better results only for Sb. In the PM samples, the elements found in the highest average concentrations by ICP were Zn and Al (3–6 μg m 3). The anions found in the highest average concentrations were SO42  in PM2.5 (2–4 μg m 3) and Cl in TSP (2–6 μg m 3). Principal component analysis (PCA) in combination with enrichment factors (EF) indicated industrial sources in PM2.5. Analysis of TSP suggested both anthropogenic and natural sources. In conclusion, this work contributes data on air quality, as well as a method for the analysis of PM samples by ICP-MS.  相似文献   

14.
A sensitive and selective liquid chromatographic–tandem mass spectrometric (LC–MS–MS) method was developed to determine pantoprazole sodium (PNT) in human urine. After solid-phase extraction with SPE cartridge, the urine sample was analysed on a C18 column (symmetry 3.5 μm; 75 mm × 4.6 mm i.d) interfaced with a triple quadrupole tandem mass spectrometer. Positive electrospray ionization was employed as the ionization source. The mobile phase consisted of acetonitrile–water (90:10, v/v). The method was linear over a concentration range of 1–100 ng mL?1. The lower limit of quantitation was 1 ng mL?1. The intra-day and inter-day relative standard deviation across three validation runs over the entire concentration range was <10.5%. The accuracy determined at three concentrations (8.0, 50.0 and 85.0 ng mL?1 PNT) was within ±1.25% in terms of relative errors.  相似文献   

15.
A high-resolution continuum source atomic absorption spectrometric method was developed and validated for the determination of NiII(3-OMe-salophene) (a complex with anticancer activity in vitro) in MCF7 and HT29 cancer cell lines. The primarily most sensitive line 232.003 nm was selected for analysis. Compared to the standard nickel, the absorbance values obtained for NiII(3-OMe-salophene) complex was at least 93% at the upper end of linear range of the calibration curve. The use of common matrix modifiers including magnesium nitrate, palladium nitrate, ammonium hydrogen phosphate, lanthanum chloride and calcium nitrate brought no significant improvement in the GF AAS measurement. The dynamic linear working range of the calibration curve was found to be between 2.16 and 12.0 μg L? 1 (ppb). This covers a concentration range of the complex from 0.036 μM to 0.204 μM. Typical coefficients of variation (n = 6) ranged from 0.2% to 6.7% for Ni in NiII(3-OMe-salophene). Detection and quantitation limits were 0.65 and 2.16 μg L? 1 (ppb), respectively. The proposed method has been successfully applied to the analysis of NiII(3-OMe-salophene) complex in cell lines of breast cancer (MCF7) and colon cancer (HT29). However, being based on the determination of nickel in the salophene complex, the method was unsuitable for the quantitation of NiII(3-OMe-salophene) in serum albumin, which originally contains significant amount of nickel. For this purpose, a high performance liquid chromatographic method with a monolithic silica RP-18e column has been developed to quantitate the complex in serum albumin. The developed chromatographic method depends on detecting the whole complex in serum rather than the bounded nickel. A mobile phase consisting of 25 mM phosphate buffer pH 3/methanol (30:70, v/v) was pumped at a flow rate of 1 mL min? 1. The eluted complex was monitored at a wavelength of 250 nm. The dynamic linear working range of the calibration curve for the developed LC method was found to be between 100 and 20,000 μg L? 1 (0.23–46.18 μM). Detection and quantitation limits were 30 and 100 μg L? 1 (ppb), respectively.  相似文献   

16.
Two simple and sensitive high performance liquid chromatographic (HPLC) methods have been developed for the simultaneous determination of three different quinolones: enrofloxacin, lomefloxacin and ofloxacin in their pure and dosage forms, one with reversed phase HPLC and the other with ion-pair HPLC. In reversed phase HPLC, method (A), the mobile phase consists of 2.18% aqueous solution of KH2PO4 with pH adjusted to 2.4 ± 0.2 with acetonitrile (80:20; v/v), the mobile phase pumped at flow rate of 1.2 ml min?1. A Neucleosil C18 column (10 μm, 100 Å), 250 mm length × 4.6 mm diameter was utilized as stationary phase. Detection was affected spectrophotometrically at 294 nm. While in ion-pair HPLC, method (B), the mobile phase was aqueous solution of 0.65% sodium perchlorate and 0.31% ammonium acetate adjusted to pH 2.2 ± 0.2 with orthophosphoric acid: acetonitrile (81:19; v/v), the mobile phase pumped at flow rate of 1.5 ml min?1. A μ bondapack C18 column (10 μm, 100 Å), 250 mm length × 4.6 mm diameter was utilized as stationary phase. Detection was affected spectrophotometrically at 294 nm. Linearity ranges for enrofloxacin, lomefloxacin and ofloxacin were 4.0–108, 7.0–112 and 8.0–113 μg ml?1, respectively using method A and 8.0–112, 7.0–112 and 5.0–105 μg ml?1, respectively applying method B. Minimum detection limits obtained were 0.013, 0.023 and 0.035 μg ml?1 for enrofloxacin, lomefloxacin and ofloxacin, respectively using method A, and 0.028, 0.023 and 0.011 μg ml?1 using method B. The proposed methods were further applied to the analysis of enrofloxacin in injection and tablets containing the ofloxacin and lomefloxacin drugs, and the results were satisfied.  相似文献   

17.
In this study an effective method was developed to assay erythromycin ethylsuccinate for an oral suspension dosage form. The chromatographic separation was achieved on an X-Terra™ C18 analytical column. A mixture of acetonitrile–ammonium dihydrogen phosphate buffer (0.025 mol L-1) (60:40, V/V) (pH 7.0) was used as the mobile phase, effluent flow rate monitored at 1.0 mL min−1, and UV detection at 205 nm. In forced degradation studies, the effects of acid, base, oxidation, UV light and temperature were investigated showing no interference in the peak of drug. The proposed method was validated in terms of specificity, linearity, robustness, precision and accuracy. The method was linear at concentrations ranging from 400 to 600 μg mL−1, precise (intra- and inter-day relative standard deviations <0.65), accurate (mean recovery; 99.5%). The impurities and degradation products of erythromycin ethylsuccinate were selectively determined with good resolution in both the raw material and the final suspension forms. The method could be useful for both routine analytical and quality control assays of erythromycin ethylsuccinate in commercial powder for an oral suspension dosage form and it could be a very powerful tool to investigate the chemical stability of erythromycin ethylsuccinate.  相似文献   

18.
Cu was determined in a wide range of petroleum products from crude oil distillation using flame atomic absorption spectrometry (FAAS), electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICP-MS). Different procedures of sample preparation were evaluated: (i) mineralization with sulfuric acid in an open system, (ii) mineralization in a closed microwave system, (iii) combustion in hydrogen–oxygen flame in the Wickbold's apparatus, (iv) matrix evaporation followed by acid dissolution, and (v) acidic extraction. All the above procedures led to the transfer of the analyte into an aqueous solution for the analytical measurement step. It was found that application of FAAS was limited to the analysis of the heaviest petroleum products of high Cu content. In ICP-MS, the use of internal reference method (with Rh or In as internal reference element) was required to eliminate the matrix effects in the analysis of extracts and the concentrated solutions of mineralized heavy petroleum products. The detection limits (in original samples) were equal to, respectively, 10, 86, 3.3, 0.9 and 0.4 ng g 1 in procedures i–v with ETAAS detection and 10, 78, 1.1 and 0.5 ng g 1 in procedures i–iii and v with ICP-MS detection. The procedures recommended here were validated by recovery experiments, certified reference materials analysis and comparison of results, obtained for a given sample, in different ways. The Cu content in the analyzed samples was: 50–110 ng g 1 in crude oil, < 0.4–6 ng g 1 in gasoline, < 0.5–2 ng g 1 in atmospheric oil, < 6–100 ng g 1 in heavy vacuum oil and 140–300 ng g 1 in distillation residue.  相似文献   

19.
A dynamic liquid phase microextraction (LPME) system, based on hollow-fibre supported liquid membrane (SLM) extraction, was developed for extracting ionisable xenobiotics from human plasma, and its performance was evaluated (in terms of extraction efficiency, reproducibility, durability and carry-over) using nitrophenolic compounds as model analytes at concentrations of 0.1–0.5 μg mL?1 in aqueous standards. The efficiency and repeatability were tested also on spiked human plasma. The system is non-expensive, convenient, requires minimal manual handling and enables samples with volumes as small as 0.2 mL to be extracted. For plasma samples extraction efficiencies of between 30 and 58% were achieved within 20 min, including washing steps. The limit of detection (LOD) values were in the range 0.02–0.03 μg mL?1. The developed system can provide enrichment factors up to eight, based on the injection-to-acceptor volume ratio (in this case 0.2–0.025 mL). The same hollow-fibre membrane was used up to 8 days with no loss of efficiency. Carry-over was lower than detection limit.  相似文献   

20.
The Amberlite XAD-7 resin modification was carried out by loading 2-(1-(4-chlorophenyl)-4,5-diphenyl-1H-imidazol-2yl)-4-nitrophenol (CPDPINP). Subsequently, this new sorbent was applied for the enrichment of metal ions such as Cu2+, Ni2+, Co2+ Zn2+ and Pb2+ ions. The effect of various parameters on their sorption and following recoveries was studied in column procedure. The preconcentrated ions were eluted by appropriate eluent and their contents were quantified by FAAS. This method has preconcentration factor of 150 and enrichment factor in the range of 20.8–29.1. At optimum values of all variables, the proposed method has linear calibration graphs in the range of 0.01 up to 0.29 μg mL−1 with detection limit (3SDb/m, n = 15) between 1.6 and 2.6 ng mL−1. This protocol is usable for successful analysis of Cu2+, Ni2+, Co2+ Zn2+ and Pb2+ ions in different matrices with reasonable recoveries (>93%) and acceptable relative standard deviation (<4.7%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号