首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of calcination temperatures on dry reforming catalysts supported on high surface area alumina Ni/γ-Al2O3 (SA-6175) was studied experimentally. In this study, the prepared catalyst was tested in a micro tubular reactor using temperature ranges of 500, 600, 700 and 800 °C at atmospheric pressure, using a total flow rate of 33 ml/min consisting of 3 ml/min of N2, 15 ml/min of CO2 and 15 ml/min of CH4. The calcination was carried out in the range of 500–900 °C. The catalyst is activated inside the reactor at 500–800 °C using hydrogen gas. It was observed that calcination enhances catalyst activity which increases as calcination and reaction temperatures were increased. The highest conversion was obtained at 800 °C reaction temperature by using catalyst calcined at 900 °C and activation at 700 °C. The catalyst characterization conducted supported the observed experimental results.  相似文献   

2.
《Comptes Rendus Chimie》2015,18(3):250-260
CuO–ZnO–Al2O3 catalysts were synthesized by two methods, sol–gel and co-precipitation syntheses. Al2O3 was then substituted with other supports, such as ZrO2, CeO2 and CeO2–ZrO2 in order to have a better understanding of the support's effect. These catalysts containing 30 wt% of Cu were then tested for CO2 hydrogenation into methanol. The effect of reaction temperature and GHSV on the catalytic behaviour was also investigated. The best results were obtained with a 30 CuO–ZnO–ZrO2 catalyst synthesized by co-precipitation and calcined at 400 °C. This catalyst presents a good CO2 conversion rate (23%) with 33% of methanol selectivity, leading to a methanol productivity of 331 gMeOH.kgcata−1·h−1 at 280 °C under 50 bar and a GHSV of 10,000 h−1.  相似文献   

3.
Hydropyrolysis of rice husk was performed using nickel-loaded Loy Yang brown coal char (Ni/LY) catalyst in a fluidized bed reactor at 500, 550, 600 and 650 °C with an aim to study the influence of catalyst and catalytic hydropyrolysis temperature on product yields and the composition of bio-oil. An inexpensive Ni/LY char was prepared by the ion-exchange method with nickel loading rate of 9 ± 1 wt.%. Nickel particles which dispersed well in Loy Yang brown coal char showed a large specific surface area of Ni/LY char of 350 m2/g. The effects of catalytic activity and hydropyrolysis temperature of rice husk using Ni/LY char were examined at the optimal condition for bio-oil yield (i.e., pyrolysis temperature 500 °C, static bed height 5 cm, and gas flow rate 2 L/min without catalyst). In the presence of catalyst, the oxygen content of bio-oil decreased by about 16% compared with that of non-catalyst. Raising the temperature from 500 to 650 °C reduced the oxygen content of bio-oil from 27.50% to 21.50%. Bio-oil yields decreased while gas yields and water content increased with increasing temperature due to more oxygen being converted into H2O, CO2, and CO. The decreasing of the oxygen content contributed to a remarkable increase in the heating value of bio-oil. The characteristics of bio-oil were analyzed by Karl Fischer, GC/MS, GPC, FT-IR, and CHN elemental analysis. The result indicated that the hydropyrolysis of rice husk using Ni/LY char at high temperature can be used to improved the quality of bio-oil to level suitable for a potential liquid fuel and chemical feedstock.  相似文献   

4.
《Comptes Rendus Chimie》2014,17(5):454-458
The steam reforming of methane over Cu/Co6Al2 mixed oxides with different copper contents was studied. The Co6Al2 support was prepared via the hydrotalcite route. It was thermally stabilized at 500 °C, impregnated with 5 wt.%, 15 wt.% or 25 wt.% copper using copper (II) nitrate Cu(NO3)2·3H2O precursor and then calcined again at 500 °C under an air flow. The impregnation of copper enhanced significantly the reactivity of the solids in the considered reaction. The 5Cu/Co6Al2 solid was the most reactive one, with a methane conversion of 96% at 650 °C. The selectivities of H2 and CO2 were also better for the catalyst containing 5 wt.% copper compared to higher copper loadings. The decrease in the catalytic reactivity with increasing the copper content was attributed to the formation of agglomerated and less reactive CuO species, which were detected by XRD and TPR analyses.  相似文献   

5.
A simple and highly efficient Ni catalyst was synthesized and showed excellent catalytic performance for selectively liquid-phase hydrogenation of furfural to furfuryl alcohol or tetrahydrofurfuryl alcohol.  相似文献   

6.
A mixed-conducting perovskite-type Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCFO) ceramic membrane reactor with high oxygen permeability was applied for the activation of methane. The membrane reactor has intrinsic catalytic activities for methane conversion to ethane and ethylene. C2 selectivity up to 40–70% was achieved, albeit that conversion rate were low, typically 0.5–3.5% at 800–900°C with a 50% helium diluted methane inlet stream at a flow rate of 34 ml/min. Large amount of unreacted molecular oxygen was detected in the eluted gas and the oxygen permeation flux improved only slightly compared with that under non-reactive air/He experiments. The partial oxidation of methane to syngas in a BSCFO membrane reactor was also performed by packing LiLaNiO/γ-Al2O3 with 10% Ni loading as the catalyst. At the initial stage, oxygen permeation flux, methane conversion and CO selectivity were closely related with the state of the catalyst. Less than 21 h was needed for the oxygen permeation flux to reach its steady state. 98.5% CH4 conversion, 93.0% CO selectivity and 10.45 ml/cm2 min oxygen permeation flux were achieved under steady state at 850°C. Methane conversion and oxygen permeation flux increased with increasing temperature. No fracture of the membrane reactor was observed during syngas production. However, H2-TPR investigation demonstrated that the BSCFO was unstable under reducing atmosphere, yet the material was found to have excellent phase reversibility. A membrane reactor made from BSCFO was successfully operated for the POM reaction at 875°C for more than 500 h without failure, with a stable oxygen permeation flux of about 11.5 ml/cm2 min.  相似文献   

7.
Alumina gels AN6 and AN7 were prepared by precipitation with NaOH from hydrated aluminum sulfate at pH 6 and 7, respectively. A third alumina gel AA7 was similarly prepared, but by precipitation with 30% ammonia. Pure cadmia C8 and C9 were precipitated from cadmium sulfate at pH 8 and 9 using NaOH. Five mechanically mixed gels ACM (1:0.25), ACM (1:0.5), ACM (1:1), ACM (0.5:1) and ACM (0.25:1) were prepared by thoroughly mixing the appropriate molar ratios of AN7 and C8. Also, five coprecipitated gels ACC (1:0.25), ACC (1:0.5), ACC (1:1), ACC (0.5:1) and ACC (0.25:1) were coprecipitated by dropping simultaneously the appropriate volumes of 1 M aluminum sulfate, 1 M cadmium sulfate and 3 M NaOH. Calcination products at 400, 500, 600, 800 and 1000 °C were obtained from each preparation.TG–DTA patterns of uncalcined samples were analyzed and the XRD of all 1000 °C-products and some selected samples calcined at 400–800 °C were investigated. The thermal behaviors of pure and mixed gels depend on the precipitating agent, pH of precipitation, chemical composition and method of preparation. Generally, calcination at temperatures below 800 °C gave poorly crystalline phases. Well crystalline phases are obtained at 800 and 1000 °C. For pure alumina γ-Al2O3 was shown as 400 °C-calcination product that transforms into the δ form around 900 °C and later to θ-Al2O3 as a major phase and α-Al2O3 as a minor phase at 1000 °C. CdO was shown by 500 °C-calcined cadmia gel that showed color changes with rise of calcination temperature. The most stable black cadmium oxide phase (Monteponite) is obtained upon calcination at 1000 °C. Thousand degree celsius- calcined mixed oxides showed θ-Al2O3, α-Al2O3, CdAl2O4 and monteponite which dominate depending on the chemical composition.  相似文献   

8.
Pyrolysis of corncob with and without catalyst was investigated using thermogravimetry analyzer coupled with Fourier transform infrared spectroscopy (TGA–FTIR). The effects of two completely different catalysts, acid catalyst (MCM-41) and base catalyst (CaO), on the formation characteristics and composition of pyrolysis vapor were studied. The results show that these two catalysts give different product distributions. For catalytic run with MCM-41, the molality of carbonyl compounds decreases 10.2%, while that of phenols, hydrocarbons and CH4 increases 15.32%, 4.29% and 10.16% compared with non-catalytic run, respectively. The increase of phenols exhibits in a wide temperature range from about 295 °C to 790 °C in the catalytic run with MCM-41 catalyst. However, the use of CaO in pyrolysis of corncob leads to a huge change of product distribution. The molality of acids decreases 75.88%, while the molality of hydrocarbons and CH4 increases 19.83% and 51.05% compared with non-catalytic run, respectively. CaO is very effective in deacidification and the conversion of acids promotes the formation of hydrocarbons and CH4. Catalytic pyrolysis of corncob with CaO shows two main weight-loss stages. The first stage is from 235 °C to 310 °C with a weight loss of 31%. The second stage is from 650 °C to 800 °C with a weight loss of 21%.  相似文献   

9.
Zijuan tea theabrownins (ZTTBs) was extracted from a type of fermented Zijuan tea and separated into fractions according to molecular weight. The extract was found to contain predominantly two fractions: <3.5 kDa and >100 kDa. These two fractions were analyzed for chemical composition, structural characteristics by Curie-point pyrolysis–gas chromatography–mass spectroscopy (CP-Py–GC/MS). The affects of pyrolysis temperature on pyrolytic products were also investigated. The fraction >100 kDa produced 50 GC/MS peaks during pyrolysis at 280 °C, 70 peaks at 386 °C, and 134 peaks at 485 °C. Fourteen of the products formed at 280 °C, 12 of those formed at 386 °C, and 21 of those formed at 485 °C were identified with match qualities of greater than 80%. The fraction <3.5 kDa gave 51 peaks during pyrolysis at 280 °C, 99 peaks at 386 °C, and 257 peaks at 485 °C. Six products formed at 280 °C, four products formed at 386 °C, and 61 products formed at 485 °C were identified with match qualities of greater than 80%. Pyrolysis temperatures of 485 °C and 386 °C were found suitable for the two fractions respectively. CP-Py–GC/MS revealed that, the fraction >100 kDa mainly consisted of phenolic pigments, esters, proteins, and polysaccharides, while the fraction <3.5 kDa contained no polysaccharide. CP-Py–GC/MS is an effective tool for the composition difference and structural characteristics of ZTTBs as well as other complex macromolecular plant pigments.  相似文献   

10.
In this paper the combination of catalytic and stepwise pyrolysis is explored. A mixture of polyethylene (PE), polypropylene (PP), polystyrene (PS), poly(ethylene terephthalate) (PET) and poly(vinyl chloride) (PVC), which resembles real municipal plastic waste, has been pyrolysed in a 3.5 dm3 semi-batch reactor at 440 °C for 30 min using a ZSM-5 zeolite as catalyst. A low temperature (300 °C) dechlorination step has been carried out both with and without catalyst. It has been proved that the application of such dechlorination step gives rise to a 75 wt% reduction of chlorine in the liquid fraction. However, such step has a negative influence on the catalyst, which loses some catalytic activity. The optimum procedure in terms of quality and chlorine content of the products is the combination of first a low temperature step without catalyst, and second the catalytic pyrolysis step.  相似文献   

11.
Novel camphor sulfonamide based organocatalysts were evaluated for their catalytic activity in the Michael reaction of ketones with nitroolefins. Reaction of ketones with β-nitrostyrenes in the presence of 20 mol % organocatalyst 1a and benzoic acid under solvent-free conditions at 0 °C provided the desired Michael adducts with high chemical yields (up to 97%) and excellent stereoselectivities (>99:1).  相似文献   

12.
The compounds RuL2HX, where L = PiPr3 and X = Cl or N(SiMe3)2, are catalyst precursors for dimerization of terminal alkynes to enynes and also to cumulenes at 23 °C; selectivity among these products is X-dependent, but not high. Conversion of Ru species onto the catalytic cycle was undetectably small, so alternative approaches to understanding the catalytic mechanism were employed: stoichiometric reactions, independent synthesis of candidate intermediates, and trapping with CO. These show the intermediacy of vinylidenes and vinyl compounds, and reveal conversion of cumulenes to the thermodynamically more stable enynes.  相似文献   

13.
《Comptes Rendus Chimie》2015,18(10):1074-1083
Hydrotalcites containing Cu, Co and Mn with varying manganese contents were prepared by co-precipitation. Manganese was also introduced into the catalysts via adsorption of an Mn–EDTA complex from an aqueous solution. The obtained samples were characterized by room- and high-temperature XRD, low-temperature nitrogen sorption, and FT–IR. Calcination of the catalysts at 500 °C resulted in the formation of mixed oxides with specific surface areas of 166–187 m2/g. The calcined samples were tested as catalysts for selective catalytic reduction of NOx with ammonia. It was found that the Mn content strongly influences the product selectivity in SCR–NH3. Mn–EDTA modified samples exhibited higher selectivity towards N2 than Mn hydrotalcites obtained by the co-precipitation method. A hydrotalcite sample containing 5.4 wt% of manganese showed the highest catalytic activity and the lowest selectivity to N2 at the same time.  相似文献   

14.
The activities of Pt/WO2, Ir/WO2 and Pt–Ir/WO2 toward the conversion of methylcyclopentane (MCP) were investigated. The catalysts were prepared using impregnation and co-impregnation methods and were characterized by SEM, XRD, N2-sorption and TEM investigations. The most active catalyst toward the conversion of MCP, irrespective of the temperature, was Ir/WO2. The order of the reactivity was Ir/WO2 > Pt–Ir/WO2 > Pt/WO2. Strong metal–support interactions (SMSI) were observed for all the catalysts over the entire investigated temperature range. At 400 °C, the Pt and Pt–Ir showed 100% selectivity toward ring-enlargement reactions associated with the presence of electron-deficient adduct sites on the reducible acidic WO2 support. Ring opening occurred over all the catalysts in three positions, resulting in the formation of 2-methylpentane (2-MP), 3-methylpentane (3-MP), and n-hexane (n-H). Difficulty in breaking the secondary – tertiary carbon bonds was observed predominantly on the Ir catalyst, which opens the MCP ring via a selective mechanism.  相似文献   

15.
Gorse species (Ulex sp.) are ubiquitous in the shrublands of NW Spain and have the potential to become key players in an integral biofuel/biochar program in NW Spain. Here we present molecular characterization (using pyrolysis–GC/MS) of a biochar “thermosequence” obtained by laboratory heating of Ulex europaeus wood in a muffle furnace between 200 and 600 °C (TCHAR). Low temperature chars (TCHAR  350 °C) produced significant amounts of pyrolysis products of which the precursor biopolymer could be recognized, while high-temperature chars (TCHAR  400 °C) produced mainly phenols and monocyclic and polycyclic aromatic hydrocarbons, which are not specific for any biopolymer. Carbohydrate could hardly be recognized at TCHAR  350 °C. The thermal rearrangement of polyphenols, mainly lignin, was reflected in more detail (1) C3-side chain shortening and probably depolymerization (TCHAR 200–350 °C), (2) demethoxylation of syringyl and probably also some guaiacyl lignin (TCHAR 300–400 °C), (3) elimination of virtually all remaining methoxyl groups (TCHAR 350–400 °C), through dehydroxylation and demethoxylation, (4) almost complete dehydroxylation of lignin and other biopolymers (TCHAR 400–500 °C), (5) progressive condensation into polyaromatic structures (TCHAR 300–500 °C) and (6) partial elimination of alkyl bridges between (poly)aromatic moieties (TCHAR 450–500 °C). These results were supported by Fourier transform infrared spectroscopy (FTIR) of the same samples. We conclude that pyrolysis–GC/MS can be used as a rapid molecular screening method of gorse-derived biochar. Molecular properties elucidation is an essential part of predicting the stability and agronomical behavior of gorse-derived biochar after future implementation in soils.  相似文献   

16.
《Comptes Rendus Chimie》2014,17(7-8):785-789
In the context of fuel upgrading by selective ring opening of naphthenes, we have investigated the catalytic conversion of cyclopentane in large hydrogen excess over iridium and platinum single-crystal surfaces. Both (111) and (112) orientations have been considered. The catalytic tests have been performed at 1 kPa and 25–600 °C using a recently developed surface reactor equipped with laser heating and online gas chromatography. Only cyclopentene and C1–C4 cracking products are formed on iridium, while platinum additionally catalyzes the formation of pentane around 200 °C, which dehydrogenates to pentene at 250 °C. Noticeably, on both metals, the surface steps prevent hydrocarbon cracking (up to 400 °C) at the benefit of dehydrogenation. In all cases, a carbon overlayer is formed on the surfaces in the course of the reaction.  相似文献   

17.
This paper emphasises the electrochemical and catalytic properties of a Ni–10% GDC (10% gadolinium-doped ceria) cermet anode of a single-chamber solid oxide fuel cell (SC-SOFC). Innovative coupling of electrochemical impedance spectroscopy with gas chromatography measurements was carried out to characterise the anode material using an operando approach. The experiments were conducted in a symmetric anode/electrolyte/anode cell prepared by slurry coating resulting in 100 μm-thick anode layers. The electrochemical performance was assessed using a two-electrode arrangement between 400 °C and 650 °C, in a methane-rich atmosphere containing CH4, O2 and H2O in a 14:2:6 volumetric ratio. The insertion of a Pt–CeO2 based catalyst with high specific surface area inside the cermet layer was found to promote hydrogen production from the Water Gas Shift reaction and consequently to improve the electrochemical performances. Indeed, a promising polarisation resistance value of 12 Ω cm2 was achieved at 600 °C with a catalytic loading of only 15 wt.%.  相似文献   

18.
Due to its cleanliness, fast energy cycle, and convenience of energy conversion, hydrogen has been regarded as the new energy source. Conventional process to produce hydrogen yield large amount of CO as byproduct. Moreover, the hydrogen storage and transportation have become the drawbacks in hydrogen economy. Thus, there has been increased interest in the hydrogen transportation medium as alternatives from the conventional process to produce and transport hydrogen. Ammonia has drawn worldwide attention as the most reliable hydrogen transportation medium. Through the decomposition of ammonia, hydrogen and nitrogen gas were produces as the byproduct without any CO or CO2 emission. In this experiment, the ore were introduced as the medium for ammonia decomposition. The ore were put into quartz tube reactor and were dehydrated at 400 °C for 1 hour, then hydrogen reduced for 2 hours before and undergone ammonia decomposition at 500-700 °C for 3 hours. The effects of temperature to the % conversion of ammonia decomposition were also studied. Ammonia decomposition at higher temperature gives higher conversion. As seen in the results, the NH3 conversion decreased with increasing time and the value after 3 hours of reaction increased in the sequence of 500 °C<600 °C< 700 °C. During ammonia decomposition, nitriding of iron occurred. The relation between temperature and the nitriding potential, KN is also investigated. The purpose of this study is to investigate the utilization of low-grade ore as medium for ammonia decomposition to produce hydrogen.  相似文献   

19.
A new ternary Fe-based alloy catalyst FeCuP applied to decompose PH_3 was prepared with low-cost material by chemical reduction deposition method.The properties of it were characterized by XRD,ICP and SEM.Its catalytic activity on the decomposition of PH_3 and the decomposition conditions were studied.FeCuP alloy exhibits high thermal stabilities and high catalytic activity.Using it as catalyst,the decomposition temperature of phosphine decreases from over 800℃to 400-500℃.The decomposition rate of phosphine achieved 100%.  相似文献   

20.
The use of TIQ-N,N′-dioxide ligands in asymmetric C–C bond forming reactions is described. In the Michael addition of cyclohexane-1,3-dione and malonates to β,γ-unsaturated α-ketoesters, excellent yields (up to 93%) and moderate to good enantioselectivities (70–89% ee) were obtained. The catalytic hetero-ene reaction of 2-methoxypropene with phenylglyoxal gave the ene product in excellent yield (95%) with moderate enantioselectivity (77% ee). The catalyst system performed well at temperatures ranging from 0 to 30 °C and relatively low catalyst loading (0.2–5 mol %) with dichloromethane being the preferred solvent for all reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号