首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ab initio prediction of infrared band intensities is considered in relation to assignment of bands to particular rotameric forms of ethenol, ethene thiol, formic and thioformic acids and nitrous acid. In particular, certain predicted dramatic band intensity changes between the rotamers of these molecules are examined in the light of experimental data where it is available, and it is shown that in some instances, strong bands should be attributed to the least energetically favoured rotamer. The overall consistency of ab initio relative intensity predictions with experimental observation for these molecules is discussed and it is concluded that for such molecules, theoretical, computed intensities form a reliable basis from which to start assignment of the spectrum.  相似文献   

2.
Protein fluorescence signals essential information about the conformational dynamics of proteins. Different types of intrinsic fluorophores reflect different protein local or global structural changes. Bovine Serum Albumin (BSA) is a transport protein that contains two intrinsic fluorophores: Tryptophan134 (Trp134) and Tryptophan213 (Trp213). This protein displays an interesting temperature dependence of the tryptophan fluorescence. However, the molecular mechanism of the temperature dependence is still unclear. In this work, we propose a generic rotamer model to explain this phenomenon. The model assumes the presence of rotamer-specific fluorescence lifetimes. The fluorescence temperature dependence is caused by the population shifts between different rotamers due to thermal effects. As a proof of concept, we show that the tryptophan's two fluorescence lifetimes (𝜏1 = 0.4–0.5 ns and 𝜏2 = 2-4 ns) are sufficient to qualitatively explain the fluorescence intensity change at different temperatures, both in buffer solution (water) and in the protein. To computationally verify our rotamer hypothesis, we use an all-atom molecular dynamics simulation to study the effects of temperature on the two tryptophans' rotamer dynamics. The simulations show that Trp134 is more sensitive to temperature, consistent with experimental observations. Overall, the results support that the temperature dependence of fluorescence in the protein BSA is due to local conformational changes at the residue level. This work sheds light on the relationship between tryptophan's rotamer dynamics and its ability to fluorescence.  相似文献   

3.
It is shown that in contrast to a traditional fluorescence spectroscopy with the parallel beams of light, in which the kinetic fluorescence decays are collected at the so-called magic-angle of thetamag=54.7 degrees, in the fluorescence microscopy, the value of the magic-angle depends on the numerical aperture (NA) of a microscope objective and on the refractive index (n) of an immersion liquid used. Two methods enabling the determination of the magic-angle values corresponding to different values of NA/n, are discussed. It is shown that thetamag changes from a value of 54.7 degrees at the NA/n-->0, to a value of 45 degrees with NA/n-->1. Also in contrast to a traditional fluorescence spectroscopy, in the fluorescence microscopy the term I parallel(t)+2I perpendicular (t) does not represent the total fluorescence intensity Itot(t), because the resulting fluorescence decay I parallel(t)+2I perpendicular (t) is contributed by the dynamic evolution of excited fluorophores. A correctly defined total fluorescence intensity solely represents the kinetic evolution of excited fluorophores, and in the fluorescence microscopy it equals Itot(t)=3Imag(t), where Imag(t) represents the fluorescence intensity detected at thetamag corresponding to a particular NA/n value. If the correct (true) decay of Itot(t) is substituted into the denominator in the expression for the emission anisotropy r(t), r(t) is a (multi)exponential function of time and it accounts for the high-aperture excitation-detection conditions.  相似文献   

4.
The mechanism of radical transport in the alpha2 (R1) subunit of class I E. coli ribonucleotide reductase (RNR) has been investigated by the phototriggered generation of a tyrosyl radical, *Y356, on a 20-mer peptide bound to alpha2. This peptide, Y-R2C19, is identical to the C-terminal peptide tail of the beta2 (R2) subunit and is a known competitive inhibitor of binding of the native beta2 protein to alpha2. *Y356 radical initiation is prompted by excitation (lambda >or= 300 nm) of a proximal anthraquinone, Anq, or benzophenone, BPA, chromophore on the peptide. Transient absorption spectroscopy has been employed to kinetically characterize the radical-producing step by time resolving the semiquinone anion (Anq*-), ketyl radical (*-BPA), and Y* photoproducts on (i) BPA-Y and Anq-Y dipeptides and (ii) BPA/Anq-Y-R2C19 peptides. Light-initiated, single-turnover assays have been carried out with the peptide/alpha2 complex in the presence of [14C]-labeled cytidine 5'-diphosphate substrate and ATP allosteric effector. We show that both the Anq- and BPA-containing peptides are competent in deoxycytidine diphosphate formation and turnover occurs via Y731 to Y730 to C439 pathway-dependent radical transport in alpha2. Experiments with the Y730F mutant exclude a direct superexchange mechanism between C439 and Y731 and are consistent with a PCET model for radical transport in which there is a unidirectional transport of the electron and proton transport among residues of alpha2.  相似文献   

5.
Tyrosyl radicals are important in long-range electron transfer in several enzymes, but the protein environmental factors that control midpoint potential and electron transfer rate are not well understood. To develop a more detailed understanding of the effect of protein sequence, we have performed 14N and 15N electron spin echo envelope modulation (ESEEM) measurements on tyrosyl radical, generated either in polycrystalline tyrosinate or in its 15N-labeled isotopomer, by UV photolysis. 14N-ESEEM was also performed on tyrosyl radical generated in tyrosine-containing pentapeptide samples. Simulation of the 14N- and 15N-tyrosyl radical ESEEM measurements yielded no significant isotropic hyperfine splitting to the amine or amide nitrogen; the amplitude of the anisotropic, nitrogen hyperfine coupling (0.21 MHz) was consistent with a dipole-dipole distance of 3.0 A. Density functional theory was used to calculate the isotropic and anisotropic hyperfine couplings to the amino nitrogen in four different tyrosyl radical conformers. Comparison with the simulated data suggested that the lowest energy radical conformer, generated in tyrosine at pH 11, has a 76 degrees Calpha-Cbeta-C1'-C2' ring and a -73 degrees C-Calpha-Cbeta-C1' backbone dihedral angle. In addition, the magnitude, orientation, and asymmetry of the nuclear quadrupole coupling tensor were derived from analysis of the tyrosyl radical 14N-ESEEM. The simulations showed differences in the coupling and orientation of the nuclear quadrupole tensor, when the tyrosinate and pentapeptide samples were compared. These results suggest sequence- or conformation-induced changes in the ionic character of the NH bond in different tyrosine-containing peptides.  相似文献   

6.
Short peptide stretches in amyloidogenic proteins can form amyloid fibrils in vitro and have served as good models for studying amyloid fibril formation. Recently, these amyloidogenic peptides have gained considerable attention, as non-amyloid ordered structures can be obtained from these peptides by carefully tuning the conditions of self-assembly, especially pH, temperature and presence of organic solvents. We have examined the effect of surface pressure on the self-assembled structures of two amyloidogenic peptides, Pβ(2)m (Ac-DWSFYLLYYTEFT-am) and AcPHF6 (Ac-VQIVYK-am) at the air-water interface when deposited from different solvents. Both the peptides are surface-active and form Thioflavin T (ThT) positive structures at the air-water interface. There is considerable hysteresis in the compression and expansion isotherms, suggesting the occurrence of structural rearrangements during compression. Preformed Pβ(2)m fibrillar structures at the air-water interface are disrupted as peptide is compressed to lower molecular areas but restored if the film is expanded, suggesting that the process is reversible. AcPHF6, on the other hand, shows largely sheet-like structures at lower molecular areas. The solvents used for dissolution of the peptides appear to influence the nature of the aggregates formed. Our results show that like hydrostatic pressure, surface pressure can also be utilized for modulating the self-assembly of the amyloidogenic and self-assembling peptides.  相似文献   

7.
With the time-correlated single-photon counting technique, the dynamic behaviour of the excited singlet state of the title compound has been investigated under various conditions. In poly(methyl methacryiate) (PMMA) it exhibits temperature-dependent multi-exponential decays, mostly two exponentials below 153 K but three at higher temperatures. The relative fluorescence yields obtained in PMMA from the static measurements disagree with fluorescence quantum yields calculated from the lifetimes of each component. This discrepancy implies a very fast radiationless process from S1 to S0 (>1010 s−1). Its existence could not be deduced without detailed multi-exponential analysis.  相似文献   

8.
Photophysical properties of 2-(4-(dimethylamino)styryl)-1-methylpyridinium iodide (DASPMI) in various solvents were investigated using time- and space-correlated single photon counting. DASPMI is known to selectively stain mitochondria in living cells.1,2 The uptake and fluorescence intensity of DASPMI in mitochondria is a dynamic measure of membrane potential. Hence, an endeavor has been made to elucidate the mechanism of DASPMI fluorescence by obtaining spectrally resolved fluorescence decays in different solvents. A biexponential decay model was sufficient to globally describe the wavelength-dependent fluorescence in ethanol and chloroform. While in glycerol, a three-exponential decay model was necessary for global analysis. In the polar low-viscous solvent water, a monoexponential decay model fitted the decay data. The sensitivity of DASPMI to solvent viscosity was analyzed using various proportions of glycerol-ethanol mixtures. The lifetimes were found to increase with increasing solvent viscosity. The negative amplitudes of the short lifetime component found in chloroform and glycerol at the longer wavelengths validated the formation of new excited-state species from the initially excited state. Time-resolved emission spectra in chloroform and glycerol showed a biphasic increase of spectral width and emission maxima. The spectral width had an initial fast increase within 150 ps and a near constant thereafter. A three-state model of generalized scheme, on the basis of successive formation of locally excited state (LE), intramolecular charge transfer state (ICT), and twisted intramolecular charge transfer (TICT) state, has been proposed to explain the excited-state kinetics. The presumed role of solvation dynamics of ICT and TICT states leading to the asymmetrical broadening and structureless fluorescence has been substantiated by the decomposition of time-resolved emission spectra in chloroform, glycerol, and ethanol/glycerol mixtures.  相似文献   

9.
The fluorescence decays of 1,3-di(1-pyrenyl)propane undergoing intramolecular excimer formation can be fitted to a sum of three exponentials, whereas only two exponentials are needed for 1,3-di(2-pyrenyl)propane. It is concluded, from an analysis of the decay parameters, that one monomer and two excimers are involved in the excimer formation for 1,3-di(1-pyrenyl)-propane, in contrast with that for 1,3-di(2-pyrenyl)propane where only one excimer and one monomer are needed in the kinetic scheme. Kinetic and thermodynamic data are presented for both molecules. The significance of the various cases (double and higher) of multi-exponential decay is discussed.  相似文献   

10.
The fluorescence spectrum of crystals grown from newly synthesized 4-(dimethylamino)benzonitrile (DMABN), measured from 25 down to −112 °C, consists of a single emission band originating from a locally excited (LE) state. The fluorescence decay of the DMABN crystals is single exponential at all temperatures investigated. These results show that intramolecular charge transfer (ICT) does not occur in crystalline DMABN. The additional red-shifted emission bands and multiexponential fluorescence decays previously reported for DMABN crystals are attributed to a minor amount of the impurity 4-(dimethylamino)benzaldehyde, the synthetic precursor of commercial DMABN.  相似文献   

11.
Several important aspects of fluorescence decay analysis are addressed and tested against new experimental measurements. A simulated-annealing method is described for deconvoluting the instrument response function from a measured fluorescence decay to yield the true decay, which is more convenient for subsequent fitting. The method is shown to perform well against the conventional approach, which is to fit a convoluted fitting function to the experimentally measured decay. The simulated annealing approach is also successfully applied to the determination of an instrument response function using a known true fluorescence decay (for rhodamine 6G). The analysis of true fluorescence decays is considered critically, focusing specifically on how a distribution of decay constants can be incorporated in to a fit. Various fitting functions are applied to the true fluorescence decays of 2-aminopurine in water-dioxane mixtures, in a dinucleotide, and in DNA duplexes. It is shown how a suitable combination of exponential decays and non-exponential decays (based on a Γ distribution of decay constants) can provide fits of equal quality to the conventional multi-exponential fits used in the majority of previous studies, but with fewer fitting parameters. Crucially, the new approach yields decay-constant distributions that are physically more meaningful than those corresponding to the conventional multi-exponential fit. The methods presented here should find wider application, for example to the analysis of transient-current or optical decays and in F?rster resonance energy transfer (FRET).  相似文献   

12.
The newest results in the application of various chromatographic methods (gas-liquid chromatography, liquid chromatographic techniques, electrically driven systems) for the separation and quantitative determination of amino acids and short peptides in pure state and in complicated matrices are compiled. The results are concisely described and critically evaluated. The future trends of the chromatographic analysis of amino acids and short peptides are briefly discussed.  相似文献   

13.
The phosphorescence lifetime (tau) of tryptophan (Trp) residues in proteins in aqueous solutions at ambient temperature can vary several orders of magnitude depending on the flexibility of the local structure and the rate of intramolecular quenching reactions. For a more quantitative interpretation of tau in terms of the local protein structure, knowledge of all potential quenching moieties in proteins and of their reaction rates is required. The quenching effectiveness of each amino acid (X) side chain and of the peptide backbone was investigated by monitoring their intramolecular quenching rate (k(obs)) in tripeptides of the form acetyl-Trp-Gly-X-CONH2 (WGX), where Trp is joined to X by a flexible Gly link. The results indicate that among the various groups present in proteins only the side chains of Cys, His, Tyr and Phe are able to quench Trp phosphorescence at a detectable rate (k(obs) > 40 s(-1)), with the quenching effectiveness for rotationally unrestricted side chains ranking in the order Cys > His+ > Tyr > Phe approximately His. For the aromatic side chains the corresponding contact rate at 20 degrees C is estimated to be between 3-4 x 10(9) s(-1) for Cys (as determined by Lapidus et al.), 0.8-8 x 10(6) s(-1) for His+, 0.37-3.7 x 10(6) s(-1) for Tyr and 0.2-2 x 10(5) s(-1) for Phe and His. In the cases of His and Tyr, k(obs) drops sharply with increasing pH, with midpoint transitions about 1 pH unit above the pKa, indicating that quenching is almost exclusive to the protonated form. From the temperature dependence of the rate, obtained in 50/50 propylene glycol/water between -20 degrees C and 20 degrees C, the reaction is characterized by activation energies of about 5 kcal.M(-1) for His+ and Tyr and 8 kcal.M(-1) for Phe. An analysis of the groups in contact with Trp residues in proteins that exhibit long phosphorescence lifetimes at ambient temperature leads to the conclusion that the contact rate of the peptide group and of the remaining side chains is lower than 0.1 s(-1), showing that these moieties are practically inert with respect to the triplet-state lifetime. It shows further that the immobilization of the aromatic side chains within the globular fold cuts their quenching effectiveness drastically to contact rates < 2 s(-1), a phenomenon attributed to the low probability of forming a stacked exciplex with the indole ring. All evidence suggests that, except in the case of nearby Cys or Trp residues, whose interaction with the triplet state reaches beyond van der Waals contact, the emission of buried Trp residues is unlikely to be quenched by surrounding protein groups.  相似文献   

14.
We measured the fluorescence decays of seven different amino‐coumarin dyes in polymer films of poly(methyl methacrylate) (PMMA), poly(styrene) (PS), and ethylene‐butene rubber (EBR); as well as in the small molecule analogs ethyl acetate and toluene. Many of the dye‐solvent and dye‐polymer combinations exhibited single exponential decays with lifetimes ranging from 2.3 to 3.9 ns. Small deviations from single exponential behavior occurred for most of the dyes in EBR. Significant deviations from single exponential behavior occurred for 7‐(diethylamino)‐2‐oxo‐2H‐1‐benzopyran‐3‐carboxylic acid (coumarin‐3) in ethyl acetate and in all polymer matrices and 2,3,6,7‐tetrahydro‐11‐oxo‐1H,5H,11H‐[1]benzopyrano[6,7,8‐ij]quinolizin‐10‐carboxylic acid (coumarin‐343) in all of the polymer matrices. Time‐resolved fluorescence spectra indicated the presence of two different excited states for coumarin‐3 and coumarin‐343 in PMMA; these spectra were qualitatively different from the time‐resolved spectra of coumarin‐3 in ethyl acetate. We rationalize these results in terms of the chemical functionalities of the various dyes. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2333–2343, 2007  相似文献   

15.
Substituted biphenyl I (BMS-207940), a selective antagonist of the endothelin A (ETA) receptor, has been proposed for the treatment of congestive heart failure. The structure of I possesses a stereogenic axis due to the hindered rotation about the biphenyl bond in the presence of its large ortho-substituents. As a result, I exhibits atropisomerism in which two nonplanar, axially enantiomers exist, which will be generically referred to as isomers A and B. Within the pharmaceutical industry, both from a scientific and regulatory point of view, characterization of enantiomeric drugs has become an important step in the development process. To investigate the configurational stability of I atropisomers, normal phase enantiomeric LC with tandem UV and laser polarimetric detection was used under pseudo-physiological conditions: first in a simple aqueous medium at 37 degrees C, and then in human serum at 37 degrees C. Kinetic studies indicated that the half-life of I enantiomerization in an aqueous medium at 37 degrees C was ca. 15 h. Enantiomerization of I atropisomers was greatly accelerated in the presence of human serum and human serum albumin, and the rate of enantiomerization depended on the concentration of I. The sera-concentration-dependent enantiomerization behavior of I strongly suggests a restricted site-specific substrate/I interaction mechanism. It was therefore demonstrated that atropisomeric interconversion studies for the compound studied required consideration of temperature, presence of plasma proteins, and drug concentration to account for the kinetic data.  相似文献   

16.
Using fluorescence lifetime microspectroscopy and imaging techniques, we have studied the fluorescence of cyan fluorescent protein (CFP) transiently expressed in HEK-293 cells, in the presence or absence of its fluorescence resonance energy transfer (FRET) partner, yellow fluorescent protein (YFP). When the two proteins are attached through a 27-amino-acid linker, a 33 % average efficiency of intramolecular energy transfer is accurately determined inside the cell. Additionally, we observe a systematic quenching of the CFP fluorescence with increasing levels of protein expression. This quenching cannot be accounted for by formation of the previously described dimer of GFP-related proteins, since its magnitude is unchanged when the fluorescent proteins carry the mutation A206K shown to dissociate this dimer in vitro. Even when the intracellular protein concentration largely exceeds the in vitro dissociation constant of the dimer, self-association remains undetectable, either between free proteins or intramolecularly within the CFP-YFP construct. Instead, the detailed concentration effects are satisfactorily accounted for by a model of intermolecular, concentration-dependent energy transfer, arising from molecular proximity and crowding. In the case of CFP alone, we suggest that self-quenching could result from a pseudo-homo FRET mechanism between different, spectrally shifted emissive forms of the protein. These phenomena require careful consideration in intracellular FRET studies.  相似文献   

17.
We describe time-resolved fluorescence anisotropy measurements for a simple 2-substituted anthracene derivative (2-An-M) as a function of concentration in poly(methyl methacrylate) (PMMA) films. The anisotropy decays via energy migration among 2-An-M molecules in the matrix. The data were interpreted in terms of the survival probability of the initially excited chromophores and are in good agreement with the plot predicted using R0 = 1.8 nm, the value of the F?rster radius determined independently by the spectral overlap method. For all concentrations, we found r0 = 0.20 +/- 0.01 for the initial anisotropy at time zero, whereas the residual anisotropy, r(infinity), was concentration-dependent and higher in magnitude than the theoretically predicted value, 4% of r0. The higher residual anisotropy values may originate from the possibility that not all of the anthracene molecules are involved in the energy migration process. Similar anthracene anisotropy experiments were performed on anthracene-labeled poly(isoprene-b-methyl methacrylate) (PI-PMMA). The results show an increased depolarization rate for samples containing a higher fraction of polymers labeled at the junction with anthracene chromophores.  相似文献   

18.
Photothermal calorimetry and fluorescence spectroscopy were used to determine the relaxations of the photoexcited singlet state of two PPV and polyfluorene oligomers, (E,E)-1,4-bis[(2-benzyloxy)styryl]benzene (PVDOP) and ter(9,9'-spirobifluorene) (TSBF). The decay rates of different S1 relaxation channels, which include intersystem crossing (ISC), radiative, and nonradiative decay can be determined by the combination of photoacoustic calorimetry (PAC) and the time-correlated single photon counting (TCSPC) technique. The triplet state energy level is determined by the phosphorescence (Ph) spectra recorded at 77 K. The ISC yields are approximately 3% and 6% for PVDOP and TSBF, respectively. The T1 to S0 transition decay rate is acquired by PAC and photothermal beam deflection (PBD) measurements. The triplet state decay rate is 17 and 21 ms(-1) at room temperature. The Ph intensity decay at 77 K shows that the triplet state lifetime increases by 4 orders of magnitude, as compared to room temperature.  相似文献   

19.
Short antimicrobial host-defense peptides represent a possible alternative as lead structures to fight antibiotic resistant bacterial infections. Bac2A is a 12-mer linear variant of the naturally occurring bovine host defense peptide, bactenecin, and demonstrates moderate, broad-spectrum antimicrobial activity against Gram-positive and Gram-negative bacteria as well as against the yeast Candida albicans. With the assistance of a method involving peptide synthesis on a cellulose support, the primary sequence requirements for antimicrobial activity against the human pathogen Pseudomonas aeruginosa of 277 Bac2A variants were investigated by using a luciferase-based assay. Sequence scrambling of Bac2A led to activities ranging from superior or equivalent to Bac2A to inactive, indicating that good activity was not solely dependent on the composition of amino acids or the overall charge or hydrophobicity, but rather required particular linear sequence patterns. A QSAR computational analysis was applied to analyze the data resulting in a model that supported this sequence pattern hypothesis. The activity of selected peptides was confirmed by conventional minimal inhibitory concentration (MIC) analyses with a panel of human pathogen bacteria and fungi. Circular-dichroism (CD) spectroscopy with selected peptides in liposomes and membrane depolarization assays were consistent with a relationship between structure and activity. An additional optimization process was performed involving systematic amino acid substitutions of one of the optimal scrambled peptide variants, resulting in superior active peptide variants. This process provides a cost and time effective enrichment of new candidates for drug development, increasing the chances of finding pharmacologically relevant peptides.  相似文献   

20.
We investigated polymer-binding 7-mer peptides that recognize differences in the polymer stereoregularity of all-purpose poly(methyl methacrylate)s (PMMAs) with simple chemical structures. Quantitative surface plasmon resonance measurements detected association/dissociation processes of the peptides against PMMA film surfaces, followed by an estimation of kinetic parameters such as association/dissociation rate constants and affinity constants. Greater association and smaller dissociation constants of the peptides were observed against a target isotactic PMMA than the structurally similar reference syndiotactic PMMA, followed by greater affinity constants against the target. A c02 peptide composed of the Glu-Leu-Trp-Arg-Pro-Thr-Arg sequence showed the greatest affinity constant (2.8x10(5) M(-1)) for the target, which was 41-fold greater than that for the reference, thus demonstrating extremely high peptide specificities. The substitution of each amino acid of the c02 peptide to Ala (Ala scanning) clearly revealed the essential amino acids for the affinity constants; the essential order was Pro5>Thr6>Arg7>Glu1>Arg4. In fact, the shorter 4-mer peptide composed of the C-terminal Arg-Pro-Thr-Arg sequence of the c02 peptide still demonstrated strong target specificity, although the N-terminal 4-mer peptide Glu-Leu-Trp-Arg completely lost its specificity. The possible conformations modeled with Molecular Mechanics supported the significance of the Arg-Pro-Thr-Arg sequence. The thermodynamic parameters of the c02 peptide suggested an induced fit mechanism for the specific affinity. The present affinity analyses of polymer-recognizing peptides revealed significant and general information that was essential for potential applications in peptidyl nanomaterials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号