首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Weber electrodynamics predicts the localized unipolar induction observed by Müller and Kennard; whereas the Maxwell theory, based upon closed current loops and the flux rule, fails. The Weber theory for high frequency fields predicts a zero self torque on the Pappas-Vaughan Z-antenna, as observed. In contrast, the Maxwell theory predicts a sizeable self torque which is not observed.  相似文献   

2.
Weber electrodynamics predicts the Kaufmann-Bucherer experiments and the fine structure energy level splitting of the H-atom (neglecting spin) without mass change with velocity (i.e., mass ). The Weber potential for the gravitational case yields Newtonian mechanics, confirming Mach's principle. It provides a cosmological condition yielding an estimated radius of the universe of 8 × 109 light years. Despite these successes, the independent evidence for Kaufmann mechanics, where mass changes with velocity (i.e., mass ) is convincing. Perhaps a slight alteration may make the Weber theory compatible with Kaufmann mechanics.  相似文献   

3.
The present paper outlines a basic theoretical treatment of decoherence and dephasing effects in interferometry based on single component Bose–Einstein condensates in double potential wells, where two condensate modes may be involved. Results for both two mode condensates and the simpler single mode condensate case are presented. The approach involves a hybrid phase space distribution functional method where the condensate modes are described via a truncated Wigner representation, whilst the basically unoccupied non-condensate modes are described via a positive P representation. The Hamiltonian for the system is described in terms of quantum field operators for the condensate and non-condensate modes. The functional Fokker–Planck equation for the double phase space distribution functional is derived. Equivalent Ito stochastic equations for the condensate and non-condensate fields that replace the field operators are obtained, and stochastic averages of products of these fields give the quantum correlation functions that can be used to interpret interferometry experiments. The stochastic field equations are the sum of a deterministic term obtained from the drift vector in the functional Fokker–Planck equation, and a noise field whose stochastic properties are determined from the diffusion matrix in the functional Fokker–Planck equation. The stochastic properties of the noise field terms are similar to those for Gaussian–Markov processes in that the stochastic averages of odd numbers of noise fields are zero and those for even numbers of noise field terms are the sums of products of stochastic averages associated with pairs of noise fields. However each pair is represented by an element of the diffusion matrix rather than products of the noise fields themselves, as in the case of Gaussian–Markov processes. The treatment starts from a generalised mean field theory for two condensate modes, where generalised coupled Gross–Pitaevskii equations are obtained for the modes and matrix mechanics equations are derived for the amplitudes describing possible fragmentations of the condensate between the two modes. These self-consistent sets of equations are derived via the Dirac–Frenkel variational principle. Numerical studies for interferometry experiments would involve using the solutions from the generalised mean field theory in calculations for the stochastic fields from the Ito stochastic field equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号