共查询到17条相似文献,搜索用时 78 毫秒
1.
采用高温熔融法制备了Tb3+掺杂高密度锗酸盐玻璃。分别测试了该玻璃的透过光谱、密度、荧光光谱、荧光寿命及X射线激发发光光谱,揭示了该玻璃的物理化学性质和发光性质。透过光谱表明该玻璃具有良好的可见光透过率。高含量的Lu2O3和Gd2O3使得玻璃的密度高达6.4 g/cm3。该玻璃在377 nm光和X射线激发下发出强的绿光。544 nm发光的荧光寿命为1.325~1.836 ms。研究结果表明,Tb3+掺杂高密度锗酸盐玻璃是一种可用于慢速事件X射线探测器的候选闪烁材料。 相似文献
2.
采用高温熔融法制备了Tb3+单掺硼酸盐、硅酸盐和磷酸盐荧光玻璃和相应的玻璃基质。根据紫外-可见透射光谱计算了Tb3+在不同基质中从7F6 到5D3和 5D4能级的实验振子强度,解释了不同基质中Tb3+发射光谱的变化原因。结果表明:因为对称性差,在磷酸盐玻璃基质中,Tb3+在542 nm和585 nm处的发射峰有劈裂现象。在硼酸盐和硅酸盐基质中,Tb3+ 的5D3能级上的粒子通过交叉弛豫过程被倒空并转移到5D4能级,故5D3能级发光(413 nm和436 nm)不明显;在磷酸盐基质中,Tb3+的5D3能级上的粒子数较少,没有交叉弛豫产生,故5D3能级发光最强。在3种基质中,Tb3+从5D4能级发射的特征峰489,542,585,620 nm的强度顺序是硼酸盐>硅酸盐>磷酸盐,与Tb3+在不同基质中从7F6 到 5D4能级的实验振子强度顺序一致。 相似文献
3.
CHEN Yan-ping LUO De-li HUANG Bin CHENG Hao TANG Xian-chen LI Qiang LEI Hong-bo CHEN Dan-ping 《光谱学与光谱分析》2021,41(6):1863-1868
采用熔融-淬冷法制备了Tb3+掺杂锂铝硅酸盐闪烁玻璃,用紫外激发光谱、发射光谱及荧光寿命表征了光致发光性能,用X射线和阴极射线激发测试了辐射致发光性能。研究结果表明:低Tb3+掺杂浓度时,随着其浓度增大,Tb3+间的交叉弛豫增加导致了5D3→7Fj跃迁的能量逐渐向5D4→7Fj迁移转变,5D3激发态的荧光寿命和发射强度均明显下降,5D4-7Fj发射强度逐渐增大。较高Tb3+浓度时,其浓度继续增加会提升非辐射比例,是荧光寿命降低和荧光猝灭的最主要原因。比较光致发光和辐照致发光性能,发现随着激发源的能量上升,会增加激发态5D3能级向5D4能级的能量转移,同时,由于玻璃的密度低会导致辐照致发光效率随激发源的能量上升而下降。 相似文献
4.
5.
采用熔融法制备了Tb3+掺杂的Bi2O3-B2O3系统玻璃,使用激发、发射及拉曼光谱分析了光学碱度与玻璃结构及发光性能的关系,同时绘制了Tb3+、Bi3+和Bi2+的能级图。研究结果表明:Tb3+掺杂的Bi2O3-B2O3玻璃由[BO3]、[BiO3]、[BO4]及[BiO6]共同组成,且随着光学碱度由0.63增加到0.93,玻璃的结构逐渐疏松。高的光学碱度使部分Bi3+变为Bi2+,发出571 nm(2P3/2(2)→2P1/2)的光,Bi3+→Tb3+的能量降低。在光学碱度及Tb3+、Bi3+和Bi2+离子的共同作用下,随着光学碱度的提高,玻璃的发光颜色由黄绿色变为白色。 相似文献
6.
采用高温固相法合成了Na3Gd1-xTbxSi2O7(x=0.01,0.02,0.04,0.06,0.08,0.1)系列荧光粉。研究了荧光粉的真空紫外-可见发光光谱和荧光寿命,讨论了Tb3+在扭曲八面体结构(标示为Gd(1)3+)和正三棱柱构型(标示为Gd(2)3+)两种格位中的最低5d轨道能级。同时研究了Gd3+→Tb3+之间无辐射能量传递速率K和无辐射能量传递效率η。研究结果表明:Tb3+在Gd(1)3+格位中的最低允许跃迁和禁戒跃迁的5d轨道能级分别位于235 nm和280 nm,在Gd(2)3+格位中的最低允许跃迁和禁戒跃迁的5d轨道能级分别位于224nm和256 nm。随着Tb3+浓度的增加,能量传递效率及速率显著增大,说明在Na3Gd1-xTbxSi2O7中存在有效的Gd3+-Tb3+能量传递。 相似文献
7.
通过控制Dy3+的掺杂浓度,制备出了不同浓度的Eu2+,Dy3+单掺和共掺高硅氧发光玻璃,测试其激发和发射光谱,讨论了Dy3+浓度对Eu2+,Dy3+共掺样品发光性质的影响。结果表明,Eu2+,Dy3+共掺高硅氧发光玻璃中存在Dy3+向Eu2+的无辐射能量传递现象,且Dy3+的引入会使高硅氧发光玻璃中Eu—O的共价作用减弱,造成Eu2+发射峰蓝移;随着Dy3+浓度的增加,Dy3+→Eu2+能量传递增强,Eu2+发光增强;Dy3+含量继续增加,则Dy3+发光出现浓度猝灭,且Dy3+→Eu2+能量传递减弱。 相似文献
8.
采用聚乙二醇200辅助的共沉淀法制备了ZnAl2O4:Tb3+绿色荧光粉。通过X射线衍射(XRD)、热重-差热(TG-DTA)和荧光光谱(FL)对合成的ZnAl2O4:Tb3+荧光粉进行了表征。XRD结果显示:合成产物为立方晶系的ZnAl2O4:Tb3+,形成良好晶体的最佳煅烧温度为700℃,与TG-DTA的数据显示一致。ZnAl2O4:Tb3+的激发光谱由260~310 nm的宽带峰和一系列的锐线峰。发射光谱的主发射峰位于544 nm,对应于D4-F5的能级跃迁。研究发现Tb3+的掺杂浓度对样品发射峰的组成强度有着很重要的影响,在Tb3+的摩尔分数为5.8%时达到最大,继续增加Tb3+的浓度,出现浓度猝灭现象。 相似文献
9.
采用溶胶-凝胶法合成了Tb3+掺杂的LiAl5O8荧光粉并对其发光性能进行了研究。XRD分析表明,前驱物在750 ℃下灼烧2 h得到的样品为纯相的LiAl5O8。样品的激发谱为一宽带,其最强的峰位于231 nm。发射谱由4组窄带组成,其中最强峰位于542 nm,对应于Tb3+离子的5D4→7F5跃迁。最佳的Tb3+掺杂摩尔分数为0.01。探讨了Tb3+掺杂浓度、电荷补偿剂(Li+)和助熔剂(H3BO3)对样品发光性能的影响,结果表明,调节激活剂浓度、添加电荷补偿剂和助熔剂均可以在很大程度上提高材料的发射强度。 相似文献
10.
通过溶胶-凝胶法制备出不同Tb3+掺杂浓度和不同二次煅烧温度下的ZnAl2O4:Tb3+荧光粉, 并利用X射线衍射(XRD)和荧光光谱等对样品进行了表征。由XRD结果可知,当Tb3+掺杂的摩尔分数不大于9%,二次煅烧温度在600℃以上时,所得粉体为结晶性良好的尖晶石相。在紫外光激发下,ZnAl2O4:Tb3+荧光粉的发射光谱由位于488 nm(5D4→7F6)、542 nm(5D4→7F5)、587 nm(5D4→7F4 )和621.5 nm(5D4→7F3)的4个发射峰组成。研究发现,Tb3+的掺杂浓度和二次煅烧温度对样品发光强度有着重要影响,当Tb3+的摩尔分数为5%,二次煅烧温度为900℃时,ZnAl2O4:Tb3+荧光粉的发光最强,继续增加Tb3+掺杂浓度或提高煅烧温度,分别会出现浓度猝灭和温度猝灭现象。 相似文献
11.
铝对掺铽硅基玻璃发光强度的影响 总被引:2,自引:0,他引:2
本文通过溶胶-凝胶方法法制备了掺Tb^3+和Al^3+的硅基玻璃,并研究了Al^3+对Tb^3+发光性能的影响,结果显示Al^3+对Tb^3+的发射峰的位置没有明显影响,但通过溶胶-凝胶方法掺Al^3+后,所有样品中Tb^3+的发光强度都明显增加,掺8%-10%的Al^3+的Tb-硅基玻璃中Tb^3+的发光强度是不掺Al^3+的Tb-硅基玻璃中的5倍,我们推测Tb^3+和Al^3+能级之间的关系对于能量传递是比较合适的,Al^3+的作用是更有效地吸收能量并完全地转移给Tb^3+。 相似文献
12.
采用高温熔融法制备Ce~(3+)或Tb~(3+)单掺和Ce~(3+)/Tb~(3+)共掺钆-钡-硅酸盐闪烁玻璃。通过透射光谱、光致激发和发射光谱、X射线激发发射光谱及荧光衰减曲线等手段对其发光性能进行研究。实验结果表明:在紫外光的激发下,Tb~(3+)掺杂闪烁玻璃发出明亮的绿光(544 nm),而Ce~(3+)掺杂闪烁玻璃发出蓝紫光。对于Ce~(3+)/Tb~(3+)共掺闪烁玻璃,在紫外光和X射线激发下均观察到Ce~(3+)离子敏化Tb~(3+)离子发光的现象,这是由于存在Ce~(3+)→Tb~(3+)的能量转移。Ce~(3+)/Tb~(3+)共掺闪烁玻璃的最佳Ce2O3掺杂摩尔分数为0.2%,此时Ce~(3+)离子向Tb~(3+)离子的能量传递效率为45.7%。在X射线激发下,Ce_2O_3摩尔分数为0.2%的Ce~(3+)/Tb~(3+)共掺闪烁玻璃在544 nm处的发光强度是Bi_4Ge_3O_(12)(BGO)闪烁晶体在500 nm处发光强度的4.2倍,积分闪烁效率达到BGO晶体的55.6%,这有利于在高分辨率医学成像中降低辐射剂量。 相似文献
13.
采用高温固相法制备了一系列Tb~(3+)掺杂方钠石荧光粉样品Na_8Al_6Si_6O_(24)Cl_2∶Tb~(3+)。通过XRD、SEM、荧光光谱、热猝灭分析仪对样品的晶体结构及其发光性能进行研究。样品晶粒由大小不等、形状不规则的多面体块状颗粒构成。样品在242 nm(对应于Tb~(3+)离子自旋允许的7FJ→9DJ跃迁)激发下发出单色性能较好的绿色荧光,相应的色坐标为(0.324 0,0.587 2),色纯度为87.4%,发光量子效率为0.74。随着Tb~(3+)掺杂浓度的增加,出现浓度猝灭现象。当浓度为5%时,样品的绿色荧光最强。研究结果表明,样品满足PDP器件的使用要求,可作为三基色材料中的绿色组分。 相似文献
14.
采用高温熔融法制备了掺杂不同比例Yb~(3+)和Tm~(3+)的硅酸盐玻璃。吸收光谱表明,Yb~(3+)和Tm~(3+)在300~1 100 nm的吸收过程彼此不干扰。研究了玻璃样品在980 nm LD泵浦下的上转换发光行为,结果表明:Yb~(3+)/Tm~(3+)在477 nm(1G4→3H6)发射强烈的上转换蓝光,在654 nm(1G4→3F4)发射较弱的红光,在795 nm(3H4→3H6)发射微弱的红外光。提高Yb~(3+)的比例均能够提高477 nm蓝光、654 nm红光和795 nm红外光的发射强度。研究分析了上转换发光强度与激光器泵浦功率之间的关系,结果表明上转换蓝光和红光发射均为三个光子过程,红外光发射为两个光子过程。分析了Yb~(3+)、Tm~(3+)在硅酸盐玻璃中上转换发光的机制。 相似文献
15.
通过高温熔融法和后续热处理制得Tb~(3+)掺杂含SrF_2纳米晶的透明硅酸盐微晶玻璃。利用X射线衍射(XRD)、透射电子显微镜(TEM)、紫外可见透过光谱、荧光光谱、荧光寿命和X射线激发发光光谱(XEL)探讨了基础玻璃和微晶玻璃的结构和光谱特性。XRD结果表明,玻璃中析出晶体为SrF_2纳米晶,衍射峰随着热处理温度的升高和时间的延长而逐渐明显,晶粒也随热处理温度的升高和时间的延长越来越大。在376 nm紫外光和X射线激发下,与基础玻璃相比,微晶玻璃发光显著增强,且发光强度随热处理温度的升高和时间的延长而逐渐增强。 相似文献
16.
LaPO4:Ce3+/Tb3+ 纳米线的合成和发光特性 总被引:2,自引:0,他引:2
通过水热法合成出Ce^3 和Tb^3 共激活的LaPO4纳米线,并同相应的微米棒进行了比较。研究了其荧光光谱和动力学过程。结果表明纳米线和微米棒的晶体结构均为单斜相。在单掺杂Ce^3 和Tb^3 的材料中,微米棒的发光强度与纳米线相比稍有提高,但在共掺杂的纳米线样品中对应Ce^3 的激发,Tb^3 的^5D4→^7F5绿光发射比微米棒提高了3~5倍。通过动力学研究,纳米线中Ce^3 和Tb^3 的电子跃迁速率与微米棒对比没有显著的提高,且Ce^3 →Tb^3 的能量传递速率降低了3倍。Tb^3 的^53能级衰减包括两个过程:快过程和慢过程。纳米线以慢过程为主,而微米棒以快过程为主。我们认为慢过程对应^5D3→^5D4的弛豫,快过程对应^5D3向其他缺陷能级的跃迁。因此共掺杂纳米线中强度的提高被归因于在纳米线中更多的边界阻碍而引起在高于^5D4的激发态能级上损失的能量更少。 相似文献
17.
采用高温固相法合成了2SrO·0.25B2O3·0.75P2O5:RE3+(RE=Ce,Tb)荧光粉。研究了其中Ce3+,Tb3+的光谱性质,Ce3+和Tb3+共掺杂时的能量传递效率,以及Ce3+和Tb3+的动力学过程。发现在共掺杂的样品中,Tb3+的5D4→7F5绿色发射比Tb3+单掺杂样品中的绿色发射有显著的提高。当Tb3+的含量从1%增加到8%时,Ce3+→Tb3+的能量传递效率逐渐增加至70%。通过动力学研究,在Ce3+和Tb3+共掺杂的样品中,提高Tb3+的浓度,Ce3+的寿命减小。此外,Ce3+离子寿命的倒数与Tb3+的浓度之间很好地符合线性函数关系,经过拟合Ce3+离子的电子跃迁速率和Ce3+→Tb3+的能量传递速率分别为5.1×10-2和1.34ns-1·mol-1。Tb3+的5D4→7F5跃迁的衰减曲线很好地遵守指数式衰减,并且随着Ce3+的掺杂浓度提高,Tb3+的5D4→7F5寿命增加。结果表明在共掺杂的2SrO·0.25B2O3·0.75P2O5材料中存在Ce3+到Tb3+的有效能量传递,这种材料在541nm处有着较强的绿光发射,所以将在发光以及显示领域有潜在的应用前景。 相似文献