首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Results of investigations of spectroscopic properties of Ca3Ga2Ge4O14 single crystals activated with Sm3+ ions are reported. It is shown that Sm3+ ions in Ca3Ga2Ge4O14 form a type of activator quasicenter whose nature is associated with disordering of the matrix. I. Franko Lvov State University, 50, Dragomanov St., Lvov, Ukraine. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 65, No. 2, pp. 296–298, March–April, 1998.  相似文献   

2.
Polycrystalline samples of Pr1−x Sr x Fe0.8Co0.2 O3−δ (x=0.1, 0.2, 0.3) (PSFC) were prepared by the combustion synthesis route at 1200°C. The structure of the polycrystalline powders was analysed with X-ray powder diffraction data. The X-ray diffraction (XRD) patterns were indexed as the orthoferrite similar to that of PrFeO3 having a single-phase orthorhombic perovskite structure (Pbnm). Pr1−x Sr x Fe0.8Co0.2O3−δ (x=0.1, 0.2, 0.3) films have been deposited on yttria-stabilized zirconia (YSZ) single-crystal substrates at 700°C by pulsed laser deposition (PLD) for application to thin film solid oxide fuel cell cathodes. The structure of the films was analysed by XRD, scanning electron microscopy (SEM) and atomic force microscopy (AFM). All films are polycrystalline with a marked texture and present pyramidal grains in the surface with different size distributions. Electrochemical impedance spectroscopy (EIS) measurements of PSFC/YSZ single crystal/PSFC test cells were conducted. The Pr0.7Sr0.3Fe0.8Co0.2O3−δ film at 850°C presents a lower area specific resistance (ASR) value, 1.65 Ω cm2, followed by the Pr0.8Sr0.2Fe0.8Co0.2O3−δ (2.29 Ω cm2 at 850°C) and the Pr0.9Sr0.1Fe0.8Co0.2O3−δ films (5.45 Ω cm2 at 850°C).  相似文献   

3.
Complete and partial samarium reduction was achieved under strong reducing atmosphere by solid-state and combustion synthesis of Sr3.96Sm0.04Al14O25. Dependence of different fluxing agents on the formation of various strontium aluminates was examined. The samples were investigated by X-ray powder diffraction, temperature dependent luminescence decay and photoluminescence measurements. Excitation with UV radiation resulted in sharp and well resolved emission lines of samarium ions. Distinct temperature behavior for Sm2+ and Sm3+ were detected in the range of 100-500 K. Estimated emission thermal quenching values (TQ1/2) for divalent samarium were approximately 270 K while for trivalent state around 660 K. Measured luminescence decay values of Sm2+ are substantially lower than for Sm3+,≈1.7 and ≈2.7 ms, respectively. The spectral feature of Sm2+ emission spectrum indicates that dopant occupies low symmetry site in Sr4Al14O25 compound.  相似文献   

4.
K. Kammer 《Ionics》2009,15(3):325-328
La2 − x Sr x NiO4 +  δ materials were investigated as cathodes for the electrochemical reduction of oxygen on a Ce1.9Gd0.1O1.95 (CGO10) electrolyte using cone-shaped electrodes together with electrochemical impedance spectroscopy. The area-specific resistance (ASR) of the La2 − x Sr x NiO4 +  δ nickelates towards the reduction of oxygen is equal to the ASR of perovskites; however, it is not as low as for the best Fe–Co-based perovskites. The lowest ASR is found for the compound La1.75Sr0.25NiO4 +  δ with an ASR of 23.8 Ωcm2 measured on a cone-shaped electrode in air at 600 °C. It is suggested that difference in oxide ionic conductivity of the nickelates is the main cause for the different activity of the nickelates towards the electrochemical reduction of oxygen.  相似文献   

5.
Sm2S3 thin films were prepared on Si (1 0 0) substrates using SmCl3 and Na2S2O3 as precursors by liquid phase deposition method on self-assembled monolayers. The influence of the molar concentration ratio of [S2O32−]/[Sm3+] on the phase compositions, surface morphologies and optical properties of the as-deposited films were investigated. The as-deposited Sm2S3 thin films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), ultraviolet-visible (UV-vis) and photoluminescence spectrum (PL). Results show that it is important to control the [S2O32−]/[Sm3+] during the deposition process and monophase Sm2S3 thin films with orientation growth along (0 1 1) direction can be achieved when [S2O32−]/[Sm3+] = 2.0, pH 3.0, with citric acid as a template agent. The as-deposited thin films exhibit a dense and crystalline surface morphology. Good transmittance in the visible spectrum and excellent absorbency of ultraviolet light of the thin films are observed, and the band gap of the thin films first decrease and then increase with the increase of the [S2O32−]/[Sm3+]. The as-deposited thin films also exhibit red photoluminescence properties under visible light excitation. With the increase of the [S2O32−]/[Sm3+] in the deposition solution, the PL properties of Sm2S3 thin films are obviously improved.  相似文献   

6.
LaxSr1 ? xCoyFe1 ? yO3 ? δ (LSCF) represents one of the state-of-the-art cathode materials for solid oxide fuel cells (SOFCs) due primarily to its high ionic and electronic conductivity. In this study, a one-step infiltration process has been developed to deposit, on the surface of a porous LSCF cathode, a thin film (50–100 nm) of Sm0.5Sr0.5CoO3 ? δ (SSC), which is catalytically more active for oxygen reduction. Electrochemical impedance spectroscopy reveals that the SSC coating has dramatically reduced the polarization resistance of the cathode, achieving area-specific resistances of 0.036 Ω cm2 and 0.688 Ω cm2 at 750 °C and 550 °C, respectively. It has also maintained the stability of LSCF cathodes. In particular, the peak power densities are increased by ~ 22% upon the infiltration of SSC onto the porous LSCF cathodes of our best performing cells. These results demonstrate that a conductive backbone (e.g., LSCF) coated with a catalytic film (e.g., SSC) is an attractive approach to achieving an active and stable SOFC cathode for low-temperature solid oxide fuel cells.  相似文献   

7.
A series of (Ca1−xy Sr x )Si2O2N2:yEu2+ (x=0.0–0.97, y=0.03) phosphors were synthesized by high-temperature solid-state reaction. The XRD patterns confirm the formation of a solid solution of (Ca1−xy Sr x )Si2O2N2:yEu2+. An intense tunable green light is observed with the increasing ratio of Sr/Ca. With an increase in x, the excitation and emission spectra show a redshift and blueshift, respectively, due to large centroid shift and small Stokes shift. The temperature dependent luminescence is also investigated in the temperature range of 77–450 K. The Huang–Rhys factor and the thermal-quenching temperature are determined. Intense green LEDs were successfully fabricated based on the (Ca1−xy Sr x )Si2O2N2:yEu2+ phosphor and near-ultraviolet (∼395 nm) GaN/blue (460 nm) InGaN chips. All the results indicate that the solid solution (Ca1−xy Sr x )Si2O2N2:yEu2+ is a promising phosphor applicable to near-UV and blue LEDs for solid-state lighting.  相似文献   

8.
Results of investigations of the spectroscopic properties of manganese-activated single crystals of Sr3Ga2Ge4O14 by the methods of optical and EPR spectroscopy are reported. It is shown that magnagese activator ions form substitutional centers Mn3+ and Mn2+ in 1a-octahedral positions of the Sr3Ga2Ge4O14 lattice. Changes in the opticla properties of Sr3Ga2Ge4O14: Mn after vacuum thermal annealing are attributed to charge transfer of some of the manganese ions (Mn3+→Mn2+). The relationship between the spectroscopical properties of Mn2+ ions and the crystallochemical structure of the system are discussed. I. Franko L’vov State University, 50, Dragomanov St., L’vov, 290005, Ukraine. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 64, No. 6, pp. 779–783, November–December, 1997.  相似文献   

9.
《Solid State Ionics》2006,177(9-10):901-906
Crystal structure, thermal expansion coefficient, electrical conductivity and cathodic polarization of compositions in the system Sm0.5Sr0.5Co1  xFexO3  δ with 0  x  0.9 were studied as function of Co / Fe ratio and temperature, in air. Two phases, including an Orthorhombic symmetry for 0  x  0.4 and a cubic symmetry for 0.5  x  0.9, were observed in samples of Sm0.5Sr0.5Co1  xFexO3  δ at room temperature. The adjustment of thermal expansion coefficient (TEC) to electrolyte, which is one of the main problems of SSC, could be achieved to lower TEC values with more Fe substitution. High electrical conductivity above 100 S/cm at 800 °C was obtained for all specimens, so they could be good conductors as cathodes of IT-SOFC. The polarization behavior of SSCF as a function of Fe content was evaluated by means of AC impedance using LSGM electrolyte. It was discovered that the Area Specific Resistance (ASR) of SSCF increased as the amount of substitution of Fe for Co increased. When the amount of Fe reached to 0.4, the highest ASR was obtained and then the resistance started decreasing above that. The electrode with a composition of Sm0.5Sr0.5Co0.2Fe0.8O3  δ showed high catalytic activity for oxygen reduction operating at temperature ranging from 700 to 800 °C.  相似文献   

10.
Doped bismuth ruthenates and bismuth ruthenate-stabilized bismuth oxide composites were studied as prospective cathode material for solid oxide fuel cells. Symmetric cells were fabricated on gadolinium-doped ceria electrolytes and studied by electrochemical impedance spectroscopy. Ca- and Ag-doped bismuth ruthenate electrodes (5–10 mol%) showed the same characteristic frequency as undoped bismuth ruthenate but with higher activation energy and slightly better performance above ∼550 °C. At 700 °C, area-specific resistance (ASR) of undoped, 5 mol% Ca and 5 mol% Sr-doped bismuth ruthenate electrode was 1.45, 1.24, and 1.41  Ωcm2, respectively. The change in ASR as a function of oxygen partial pressure and current bias suggests that the rate-limiting steps for oxygen reduction in bismuth ruthenate systems are charge transfer and surface diffusion of dissociatively adsorbed oxygen to triple phase boundaries. Introduction of the erbia-stabilized bismuth oxide (ESB) phase reduced both the rate-limiting steps resulting in much improved electrode performance. At 700 °C, composite electrodes containing 31.25–43.75 wt% ESB exhibited an ASR of 0.08–0.11 Ωcm2.  相似文献   

11.
Materials containing barium (Ba), such as SmBa0.5Sr0.5Co2O5-d/Ce0.9Gd0.1O1.9 (SBSC50) and Ba0.5Sr0.5Co0.8Fe0.2O3-d (BSCF), are considered for use as an in-situ cathode in metal-supported solid oxide fuel cells (SOFCs). The electrochemical properties and sintering behavior of these materials are investigated in terms of area specific resistances (ASRs), I-V-P characteristics and microstructure. The properties of in-situ cathodes comprised of SBSC50 and BSCF are compared with those of conventional cathodes, such as La0.8Sr0.2MnO3-d (LSM), La0.8Sr0.2FeO3-d (LSF), La0.6Sr0.4Co0.2Fe0.8O3-d (LSCF) and Sm0.5Sr0.5CoO3-d/Ce0.8Sm0.2O1.9 (SSC40). Impedance spectroscopy analysis using Nyquist and Bode plots and microstructure analysis is conducted to understand the reason behind electrochemical performance differences between in-situ cathodes and sintered cathodes. From this analysis, we are also able to verify the electrochemical behavior of well-defined in-situ cathodes. SBSC50 and BSCF are the incorporated in our metal-supported cells without the use of any additional sintering process. The metal-supported cells are successfully fabricated using a high temperature sinter-joining process and we fail to detect any defects or deformation after fabrication. At an operating temperature of 800 °C, metal-supported cells with SBSC50 and BSCF cathodes exhibit maximum power densities of 0.50 Wcm-2 and 0.65 Wcm-2, respectively.  相似文献   

12.
The Sm3+-doped CaWO4 nanoparticles were synthesized by hydrothermal method. The room temperature photoluminescence (PL) spectra of Sm3+-doped CaWO4 nanoparticles doped with different Sm3+ concentrations under 405 nm excitation have been investigated. The PL spectra showed four strong emission peaks at 460, 571, 609, and 653 nm. The first emission peak at 460 nm could be due to a structural defect of the lattice, an oxygen-deficient WO3 complex. The other three emissions at 571, 609, and 653 nm were due to the f-f forbidden transitions of the 4f electrons of Sm3+, corresponding to 4G5/26H5/2 (571 nm), 6H7/2 (609 nm), and 6H9/2 (653 nm), respectively. In addition, the optimum Sm3+ concentration in CaWO4 nanoparticles for optical emission was determined to be 1.0%. The Sm3+4G5/26H7/2 (609 nm) emission intensity of Sm3+-doped CaWO4 nanoparticles significantly increased with the increase of Sm3+ concentration, and showed a maximum when Sm3+ doping content was 1.0%. If Sm3+ concentration continued to increase, namely more than 1.0%, the Sm3+4G5/26H7/2 emission intensity would decrease. The present materials might be a promising phosphor for white-light LED applications.  相似文献   

13.
The microwave dielectric properties of CuO-doped La2.98/3Sr0.01(Mg0.5Sn0.5)O3 ceramics were investigated with a view to their application in microwave devices. CuO-doped La2.98/3Sr0.01(Mg0.5Sn0.5)O3 ceramics were prepared by the conventional solid-state method. The X-ray diffraction patterns of CuO-doped La2.98/3Sr0.01(Mg0.5Sn0.5)O3 ceramics exhibited no significant variation of phase with sintering temperature. By adding 0.75 wt.% CuO, a dielectric constant of 20.07, a quality factor (Q × f) of 63,000 GHz, and a temperature coefficient of resonant frequency τf (−77.0 ppm/°C) were obtained when La2.98/3Sr0.01(Mg0.5Sn0.5)O3 ceramics were sintered at 1500 °C for 4 h.  相似文献   

14.
Fine and uniform La0.6Sr0.4Co0.2Fe0.8O3−δ powder was synthesized by a glycine–nitrate combustion process. La0.6Sr0.4Co0.2Fe0.8O3−δ electrodes were prepared on dense Ce0.8Sm0.2O2−δ electrolyte substrates using a spin-coating technique by sintering at 900–1,000 °C. The electrode properties of La0.6Sr0.4Co0.2Fe0.8O3−δ were investigated by electrochemical impedance spectroscopy and chronopotentiometry techniques with respect to preparation conditions and the resulting microstructures. The results indicate a significant effect of the microstructure on the electrode processes and polarization characteristics. The oxygen adsorption and dissociation process acted as a larger contribution to the overall electrode polarization R p in magnitude compared with the charge transfer process due to relatively low porosity levels of the electrodes. It was detected that the grain size of the electrodes exhibited a crucial role on the electrocatalytic reactivity. At 800 °C, the electrode sintered at 950 °C attained a polarization resistance of 0.18 Ω cm2, an overpotential of 27 mV at a current density of 200 mA cm−2, and an exchange current density of 308 mA cm−2.  相似文献   

15.
Ca0.54Sr0.34−1.5xEu0.08Smx(MoO4)y (WO4)1−y red phosphors were prepared by solid-state reaction using Na+ as a charge compensator for light-emitting diodes (LED). The effects of Na+ concentration, synthesis temperature, reaction time and Eu3+ concentration were studied for the properties of luminescence and crystal structure of red phosphors. The results show that the optimum reaction condition is 6%, 900 °C, 2 h and 8%. The photoluminescence spectra show that red phosphors are effectively excited at 616 nm by 292, 395 and 465 nm. The wavelengths of 465 nm nicely match the widely applied emission wavelengths of blue LED chips.  相似文献   

16.
Gd2O3:Sm3+ and Gd2O3:Sm3+,Bi3+ powders were prepared by a combustion method. Their structures were determined using X-ray diffraction. UV-visible absorption and photoluminescence spectra were investigated for Gd2O3:Sm3+ and Gd2O3:Sm3+,Bi3+ at different annealing temperatures and different doping concentrations. The emission spectra of all samples presented the characteristic emission narrow lines arising from the 4G5/26HJ transitions (J=5/2, 7/2, and 9/2) of Sm3+ ions upon excitation with UV irradiation. The emission intensity of Sm3+ ions was largely enhanced with introducing Bi3+ ions into Gd2O3:Sm3+ and the maximum occurred at a Bi3+ concentration of 0.5 mol%. The relevant mechanisms were discussed with the sensitization theory by Dexter and the aggregation behavior of Bi3+ ions.  相似文献   

17.
The effects of cubic crystal fields on the saturation magnetic moment of Sm3+ ion in ferromagnetic compounds have been investigated. In samarium compounds with magnetic elements, the exchange fieldH ex acting on Sm3+ ion is taken to be proportional to the sublattice magnetization of the magnetic element, while in compounds with nonmagnetic elementsH ex is taken to be proportional to the spin average of the Sm3+ ion and is determined self-consistently. In both types of compoundsH ex is assumed to be along [001] direction. The saturation magnetic moment is calculated by taking into account the admixture of excited (J=7/2 andJ=9/2) levels into the ground (J=5/2) level of Sm3+ ion by crystal fields and exchange fields. It is shown that depending upon the strength, the crystal fields quench or enhance the magnetic moment from the free ion value, and in some cases force Sm3+ ion to behave effectively like an (L+S) ion rather than an (LS)ion. The crystal fields may have important bearing on the performance of samarium compounds as permanent magnet materials.  相似文献   

18.
SrZr1−x Y x O3 coatings were co-sputtered from metallic Zr–Y (84–16 at.%) and Sr targets in the presence of a reactive argon–oxygen gas mixture. The structural and chemical features of the film have been assessed by X-ray diffraction and scanning electron microscopy. The electrical properties have been investigated for different substrates by Complex Impedance Spectroscopy as a function of crystalline state, temperature and atmosphere. The as-deposited coatings are amorphous and crystallise after annealing at 673 K for 2 h under air. The stabilisation of the perovskite structure is a function of the nominal composition. The films are dense and present a good adhesion on different substrates. Crystallisation and mechanical stresses are detected by alternating current (AC) impedance spectroscopy. Significant ionic conductivity in the 473–823 K temperature range is evidenced in air. Two different conduction regimes in the presence of steam are attributed to a modification of the charge carrier nature. In spite of low conductivity values (σ ~10−6 S.cm−1 at 881 K), the activation energies are in agreement with that of Y-doped strontium zirconate ceramics (~0.7 eV in air).  相似文献   

19.
Lead-free multi-component ceramics (Bi1−xyNa0.925−xyLi0.075)0.5BaxSryTiO3 have been prepared by an ordinary sintering technique and their structure and electrical properties have been studied. All the ceramics can be well-sintered at 1100 °C. X-ray diffraction patterns shows that Li+, Ba2+ and Sr2+ diffuse into the Bi0.5Na0.5TiO3 lattices to form a new solid solution with a pure perovskite structure, and a morphotropic phase boundary (MPB) is formed at 0.04 < x < 0.08. As compared to pure Bi0.5Na0.5TiO3 ceramic, the coercive field EC of the ceramics decreases greatly and the remanent polarization Pr of the ceramics increases significantly after the formation of the multi-component solid solution. Due to the MPB, lower EC and higher Pr, the piezoelectricity of the ceramics is greatly improved. For the ceramics with the compositions near the MPB (x = 0.04–0.08 and y = 0.02–0.04), piezoelectric coefficient d33 = 133–193 pC/N and planar electromechanical coupling factor kP = 16.2–32.1%. The depolarization temperature Td reaches a minimum value near the MPB. The temperature dependences of the ferroelectric and dielectric properties suggest that the ceramics may contain both the polar and non-polar regions at temperatures near/above Td.  相似文献   

20.
An historic Strontianite-type specimen from Strontian, Scotland, UK, was characterized to broaden our knowledge on luminescence properties of common carbonates. These fibrous aggregates are Strontianite (SrxCa1−xCO3) with circa 6% of CaO, interfacial water, hydrosilicate anions and substitutional divalent cations, e.g., Ca2+, Mn2+, Fe2+ in structural Sr2+ positions. The specimen was analyzed by X-ray Fluorescence Spectrometry (XRF), Environmental Scanning Electron Microscopy coupled with an Energy Dispersive X-ray Spectroscopy (ESEM-EDS) probe, Spatially-resolved Cathodoluminescence under the Scanning Electron Microscope (SEM-CL), Differential-Thermal Analyses (DTA), Thermogravimetry (TG), Thermoluminescence (TL), Radioluminescence (RL) and High Resolution Spectra Thermoluminescence (3DTL), to gain an overview of the spectral emissions, the defect linkages were modified by heating from room temperature (RT) up to 500 °C. Substitutional transition elements are probably responsible for the spectral emission bands from 500 nm to 800 nm and hydrous molecules from 300 nm to 400 nm. DTA–TG analyses performed on little chips, to preserve the fiber interfaces coherence, exhibit minor endothermic peaks attributed to outflow of water groups in fiber interfaces. Both, CL and RL curves show common spectral positions but UV–blue and red emission intensities are counterbalanced since electron irradiation reduces the UV–blue emissions while X-irradiation increases them. The TL curves show a top thermal limit at 300 °C for the 300–400 nm TL emissions which become irreversibly destroyed, whereas the longer wavelength region emits at higher temperature. The non-reversible changes observed in the 320 nm and 360 nm bands during the spectra 3DTL emission could be linked with non-bridging oxygen defects, protons and hydroxyl groups and the red emissions to the 4G (4T1g)–6S Mn2+ ion transition. Following assignations and similar spectral CL patterns of Russian Strontianite samples, the emission-defect assignments: Dy3+ 480 nm; Tb3+ 540 nm; Dy3+ 580 nm and Sm3+ 640 nm cannot be disregarded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号