共查询到20条相似文献,搜索用时 0 毫秒
1.
Mutsumasa Kyotani Wiwik Pudjiastuti Akhtar Saeed 《Journal of Macromolecular Science: Physics》2013,52(3):197-215
Structural, Theological, thermal, and mechanical properties of blends of poly(ethylene naphthalate) (PEN) and poly(ethylene terephthalate) (PET) obtained by melt blending were investigated using capillary rheometry, differential scanning calorimetry (DSC), scanning electron microscopic (SEM) observation, tensile testing. X-ray diffraction, and 1H nuclear magnetic resonance (NMR) measurements. The melt Theological behavior of the PEN/PET blends was very similar to that of the two parent polymers. The melt viscosity of the blends was between that of PEN and that of PET. Thermal properties and NMR measurement of the blends revealed that PEN is partially miscible with PET in the as molded blends, indicating that an interchange reaction occurs to some extent on melt processing. The blend of 50/50 PEN/PET was more difficult to crystallize compared with blends of other PEN/PET ratios. The blends, once melted during DSC measurements, almost never showed cold crystallization and subsequent melting and definitely exhibited a single glass transition temperature between those of PEN and PET during a reheating run. Improvement of the miscibility between PEN and PET with melting is mostly due to an increase in transesterification. The tensile modulus of the PEN/PET blend strands had a low value, reflecting amorphous structures of the blends, while tensile strength at the yield point increased linearly with increasing PEN content. 相似文献
2.
Shoubing Chen Qihua Wang Tingmei Wang 《Applied Physics A: Materials Science & Processing》2011,103(4):1047-1052
A series of polyurethane (PU)/epoxy resin (EP) graft interpenetrating polymer network (IPN) composites modified by a high molecular weight hydroxyl-terminated polydimethylsiloxane (HTPDMS) were prepared. The effects of HTPDMS content on the phase structure, damping properties and the glass transition temperature (Tg) of the HTPDMS-modified PU/EP IPN composites were studied by scanning electron microscopy (SEM) and dynamic mechanical analysis (DMA). Thermogravimetric analysis (TGA) showed that the thermal decomposition temperature of the composites increased with the increase of HTPDMS content. The tensile strength and impact strength of the IPN composites were also significantly improved, especially when the HTPDMS content was 10%. The modified IPN composites were expected to be used as structural damping materials in the future. 相似文献
3.
《Composite Interfaces》2013,20(3-4):207-219
The formation processes of unfilled and filled interpenetrating polymer networks (IPNs) and some of their physico-mechanical properties have been investigated. The formation kinetics and constituent network curing rates determine the rate and degree of microphase separation. This in turn determines the boundary layer composition and structure. Introduction of filler into the IPN during formation affects greatly the crosslinking reaction and the microphase segregation of homopolymers. It has been shown that the degree of phase segregation in filled IPNs differs from that in unfilled ones. All the fillers were found to shorten the time of internal stress appearance and to increase its value for IPNs with predominantly high-modulus component content. Some filled IPNs were shown to have greater thermodynamic stability than unfilled ones. 相似文献
4.
This article reports on the ultrasound-assisted acid hydrolysis for the synthesis and evaluation of starch nanoparticles (SNP) as nanofillers to improve the physical, mechanical, thermal, and barrier properties of polyurethane (PU) films. During the ultrasonic irradiation, dropwise addition of 0.25 mol L-1 H2SO4 was carried out to the starch dispersion for the preparation of SNPs. The synthesized SNPs were blended uniformly within the PU matrix using ultrasonic irradiation (20 kHz, 220 W pulse mode). The temperature was kept constant during the synthesis (4 °C). The nanocomposite coating films were made with a regulated thickness using the casting method. The effect of SNP content (wt%) in nanocomposite coating films on various properties such as morphology, water vapour permeability (WVP), glass transition temperature (Tg), microbial barrier, and mechanical properties was studied. The addition of SNP to the PU matrix increased the roughness of the surface, and Tg by 7 °C, lowering WVP by 60% compared to the PU film without the addition of SNP. As the SNP concentration was increased, the opacity of the film increased. The reinforcement of the SNP in the PU matrix enhanced the microbial barrier of the film by 99.9%, with the optimal content of SNP being 5%. Improvement in the toughness and barrier properties was observed with an increase in the SNP content of the film. 相似文献
5.
This study reports synthesis and characterization of poly(MMA-co-BA)/Cloisite 30B (organo-modified montmorillonite clay) nanocomposites by ultrasound-assisted in-situ emulsion polymerization. Copolymers have been synthesized with MMA:BA monomer ratio of 4:1, and varying clay loading (1–5 wt% monomer). The poly(MMA-co-BA)/Cloisite 30B nanocomposites have been characterized for their thermal and mechanical properties. Ultrasonically synthesized nanocomposites have been revealed to possess higher thermal degradation resistance and mechanical strength than the nanocomposites synthesized using conventional techniques. These properties, however, show an optimum (or maxima) with clay loading. The maximum values of thermal and mechanical properties of the nanocomposites with optimum clay loading are as follows. Thermal degradation temperatures: T10% = 320 °C (4 wt%), T50 = 373 °C (4 wt%), maximum degradation temperature = 384 °C (4 wt%); glass transition temperature = 64.8 °C (4 wt%); tensile strength = 20 MPa (2 wt%), Young’s modulus = 1.31 GPa (2 wt%), Percentage elongation = 17.5% (1 wt%). Enhanced properties of poly(MMA-co-BA)/Cloisite 30B nanocomposites are attributed to effective exfoliation and dispersion of clay nanoparticles in copolymer matrix due to intense micro-convection induced by ultrasound and cavitation. Clay platelets help in effective heat absorption with maximum surface interaction/adhesion that results in increased thermal resistivity of nanocomposites. Hindered motion of the copolymer chains due to clay platelets results in enhancement of tensile strength and Young’s modulus of nanocomposite. Rheological (liquid) study of the nanocomposites reveals that nanocomposites have higher yield stress and infinite shear viscosity than neat copolymer. Nonetheless, nanocomposites still display shear thinning behavior – which is typical of the neat copolymer. 相似文献
6.
Ayesha Kausar 《Composite Interfaces》2017,24(7):649-662
Novel polyurethane (PU) adhesive was prepared and coated on poly(methyl methacrylate) (PMMA) and poly(methyl methacrylate)/fullerene (PMMA/Full-C60) composite. Dip-coating technique was employed as facile and cost-effective procedure to coat polyurethane on film substrate. The properties of PU/PMMA and PU/PMMA/Full-C60 composite were studied using Fourier transform infrared spectroscopy, Field Emission Scanning Electron Microscopy, tensile, adhesion, thermal and flammability measurement. Testing polyurethane-coated PMMA exhibited crumpled surface while fullerene addition formed unique pattern of dispersed spherical structures. Fullerene nanofiller loading improved the adhesion and mechanical properties of composite films due to polymer–carbon interaction. In PU/PMMA/Full-C60 0.5 composite with 0.5 wt.% nanofiller, tensile strength (71.4 MPa) was increased by 18.6% while tensile modulus was increased by 143.85% compared with PU/PMMA. In PU/PMMA/Full-C60 0.5, T0 of 473 °C and Tmax of 655 °C were observed. Increasing the fullerene content up to 0.5 wt.% decreased the peak heat release rate to 131 kW/m2. Novel polyurethane-coated PMMA/Full-C60 composite have potential applications as adhesive coatings in electronic and automotive appliances. 相似文献
7.
N. Vijaya Subramanian Selvasekarapandian G. Hirankumar S. Karthikeyan H. Nithya C. S. Ramya M. Prabu 《Ionics》2012,18(1-2):91-99
The proton-conducting polymer electrolytes based on poly (N-vinylpyrrolidone) (PVP), doped with ammonium chloride (NH4Cl) in different molar ratios, have been prepared by solution-casting technique using distilled water as solvent. The increase in amorphous nature of the polymer electrolytes has been confirmed by XRD analysis. The FTIR analysis confirms the complex formation of the polymer with the salt. A shift in glass transition temperature (T g) of the PVP/NH4Cl electrolytes has been observed from the DSC thermograms which indicates the interaction between the polymer and the salt. From the AC impedance spectroscopic analysis, the ionic conductivity of 15?mol% NH4Cl-doped PVP polymer complex has been found to be maximum of the order of 2.51?×?10?5?Scm?1 at room temperature. The dependence of T g and conductivity upon salt concentration has been discussed. The linear variation of the proton conductivity of the polymer electrolytes with increasing temperature suggests the Arrhenius type thermally activated process. The activation energy calculated from the Arrhenius plot for all compositions of PVP doped with NH4Cl has been found to vary from 0.49 to 0.92?eV. The dielectric loss curves for the sample 85?mol% PVP:15?mol% NH4Cl reveal the low-frequency ?? relaxation peak pronounced at high temperature, and it may be caused by side group dipoles. The relaxation parameters of the electrolytes have been obtained by the study of Tan?? as a function of frequency. 相似文献
8.
H. Medhioub H. Smaoui C. Zerrouki J.J. Bonnet 《Journal of Physics and Chemistry of Solids》2008,69(10):2476-2480
Infrared (IR) spectroscopy, dielectric spectroscopy (DS), and thermally stimulated depolarization current (TSDC) have been used to study heat treatment effects on an epoxy-based polymer. Variations in physico-chemical and dielectric properties were examined for annealing temperatures between 55 and 170 °C. IR results have shown that heating causes both chain scission and thermal oxidation of the polymer, increasing thus the amount of trapped charges. The complex dielectric permittivity and the dielectric modulus have been analyzed, by means of DS, to highlight and separate charge relaxation phenomena from conduction contributions. Results indicate structural rearrangements, leading to a decrease of dipolar relaxation frequency (from 16 to 13.5 kHz) and an increase of the relaxation strength (around 20%). TSDC measurements have shown a current peak shift towards higher temperatures, and a significant intensity decrease, which is proportional to the quantity of released charges. 相似文献
9.
Arkadiusz Józefczak Tomasz Hornowski Miko?aj ?abowski Peter Kop?anský Andrzej Szlaferek 《Journal of magnetism and magnetic materials》2009,321(10):1505-1508
The aim of this study was to investigate the influence of poly(ethylene glycol) surface-active coating on the magnetic and thermal properties of biocompatible magnetic liquids. The data were analyzed using the high-temperature approximation model taking into account polydispersity of a system. Heating ability of the PEG-stabilized magnetic fluids was determined by the calorimetric measurement of specific absorption rate (SAR) at a frequency of 750 kHz and a magnetic field of 0-2 kA/m. MF-Oleate/PEG heating properties were found to be comparable to the ones of MF-Oleate. The PEG shell thus does not seem to effect the thermal characteristics and SAR values and might make the magnetic fluid useful for application in hyperthermia treatment. 相似文献
10.
《Current Applied Physics》2010,10(3):766-770
Poly(2-hydroxyethyl methacrylate)/poly(N-vinyl pyrrolidone) (PHEMA/PVP) double networks (DN) were prepared using a sequential method by incorporating a second network of crosslinked PVP into PHEMA. We found that the distributions of the two networks can be regulated just by modulating the morphology of the first network, thus giving expected high water content of these gels. Fourier transform infrared (FTIR) spectroscopy and scanning electronic microscopy (SEM) were used to confirm the structure of the DN. The incorporation of more hydrophilic PVP enhanced swelling ability of these gels. Because of improved hydrophilicity, the PHEMA/PVP DN exhibited higher loading capability for water-soluble substance than that of pure PHEMA, while showed a slower release rate than corresponding HEMA/NVP copolymer hydrogel. It is suggested that the DN gels are potential biomaterials for wound dressing, medical implants and other drug delivery systems. 相似文献
11.
Para-aramid fibers (Kolon) are high performance polymeric fibers characterized by their high tenacity and impact resistance. They are used for the soft body armor structures in ballistics. In this study, the testing specimens were made from multilayered Kolon fabrics impregnated with epoxy resin where silicon carbide (SiC) microparticles or SiC nanofibers were added as reinforcement. The laminated composite samples were fabricated by hot compression and curing of epoxy resin.The tensile and impact strengths of the untreated specimens were compared with the ones that underwent water absorption in duration of 72 h (immersion or humidity) followed by desorption. The immersion of the specimens in water and exposure to high humidity (70%) were performed according to the ISO 62 standard while the tensile test was carried out in accordance with the ASTM D 3039 standard. In the end, the tensile test simulation of the laminated composite by using software Abaqus® was accomplished. 相似文献
12.
E. Ray Harrell Jr. Richard P. Chartoff 《Journal of Macromolecular Science: Physics》2013,52(2):277-305
The effects of processing variables on the solid state properties of rigid PVC were studied by evaluating dynamic mechanical and tensile properties for thin film specimens of two different resins. The dynamic measurements were performed over the temperature range ?1]60 to 85°C, encompassing both the low temperature β transition and above ambient a transition (Tg). Engineering tensile strengths and energies to fracture were obtained at ambient conditions for several rates of elongation. Test specimens were prepared by solvent casting and compression molding techniques and subsequently were subjected to various thermal-mechanical histories. The results obtained were similar for both types of specimens and are described below. The various thermal histories considered include: (1) quick quenching from 225°C (samples referred to as “untreated”); (2) very slow (equilibrium) cooling after annealing at Tg; (3) quick quenching from Tg. In addition, the effects of frozen stresses were examined by systematically varying the stresses imposed on samples during the cooling processes 2 and 3. Increasing the load level imposed on specimens during equilibrium cooling resulted in enhancements of the β transition loss dispersion and tensile yield strength. Changes in loading during process 3, however, had little effect on the cooled specimens. But process 3 does alter the relaxation spectrum below Tg so that additional molecular relaxation is induced between Tβ and Tα as much as 45°C below the a transition. The anomalous tan δ dispersions thus produced are accompanied by diminished tensile yield strengths and greatly increased energies to fracture. The most extreme case was encountered for the “untreated” specimens which were rapidly quenched from 225°C. The loss tangent data indicate remarkable differences in the region between Tβ and Tα. When comparing the dynamic mechanical data with the fracture energy results for the same samples we note that increases in the intensity of the T < Tg anomalous dispersion correlate with increasing energies to fracture. On the other hand, the β transition intensity does not directly correlate. One molecular model which is consistent with these observations assumes that elongation induces a dilation of the polymer. Since most polymers possess Poisson ratios less than 0.5, the dilation will create extra internal volume (including free volume) in the polymer network. The increase in internal volume as elongation proceeds has the net effect of shifting the conditions of testing toward higher temperatures on a molecular relaxation scale permitting a higher level of molecular mobility at ambient conditions. As a sample continues to elongate one of two consequences is encountered: the imposed deformation cannot be accommodated by the available molecular mobility and the specimen fractures; or the deformation results in dilation to the extent that the response properties are shifted into a region of the relaxation spectrum where molecular mobility is sufficient for the specimen to accommodate the imposed deformation and yielding occurs. Yielding is expected if the effective temperature shifts as far as Tg before the sample fractures. In a case where there are additional molecular relaxation possibilities prior to the a transition, such as those in the anomalous dispersion region between Tβ and Tα, sufficient dilation for yielding will be encountered before the normal Tg is reached. The anomalous T < Tg relaxation process thus tends to promote increased elongation and higher energies to fracture in PVC. 相似文献
13.
Junwen Ren 《Composite Interfaces》2018,25(3):205-219
In this study, poly (vinyl alcohol) (PVA) composites reinforced by multiwall carbon nanotubes (MWCNTs) functionalized with either phenolic hydroxyl groups (MWCNTs-f-OH) or PVP molecule (PVP@MWCNTs) were fabricated. The objective was to elucidate the effect of different MWCNTs surface functionalization on the mechanical properties of the nanocomposites. It was found that both of PVP@MWCNTs and MWCNTs-f-OH had a good dispersion in PVA matrix. However, the MWCNTs-f-OH had stronger effective interfacial interaction with PVA matrix than PVP@MWCNTs, owe to the formation of hydrogen bonds between MWCNTs-f-OH and PVA. The stress-strain measurements showed that the Young’s modulus and tensile strength of MWCNTs-f-OH/PVA with only 1.0 wt.% contents increased by 200 and 100% compare with that of PVA, respectively. The findings of this experimental study emphasized the critical role of MWCNTs surface morphology in determining the mechanical properties of nanocomposites, and shed new light on understanding and advancing the properties of carbon nanotube based composites. 相似文献
14.
Light-emitting diodes (LEDs), based on blue-emitting polyfluorenes are usually prone to the appearance of a contaminant green emission (centered around 520 nm), leading to an apparent whitish light emission. We find that, for LEDs based on poly(9,9-dioctylfluorene), PFO, the blending with the hole transporting polyvinylcarbazole, PVK, can suppress such green emission. LEDs based on a PFO/PVK blend with a 1:2 weight ratio and with aluminum cathodes show a quite stable blue emission. This result reveals the important role played by the interchain interactions on the observed contaminant green emission. In addition, we observe that in Al-based devices blending causes a decrease in EL efficiency while in Mg-based devices we obtained higher efficiencies with the blend PFO:3PVK when compared with neat PFO-based devices. 相似文献
15.
利用多巴胺氧化自聚合形成聚多巴胺(PDA)与ZnO结合形成PDA/ZnO复合阴极缓冲层,制备了以P3HT:PC_(61)BM为活性层的倒置结构聚合物太阳能电池,通过改变PDA的自聚合时间来分析复合阴极缓冲层对器件性能的影响.实验发现,随着PDA的自聚合时间的增加,聚合物太阳能电池的光电转换效率先增大后减小,当自聚合时间为10 min时,相应器件光伏性能达到最优值,其开路电压V_(OC)为0.66 V,短路电流密度J_(SC)为9.70 mA/cm~2,填充因子FF为68.06%,光电转换效率PCE为4.35%.器件性能改善的原因是由于PDA/ZnO复合阴极缓冲层减小了ZnO与ITO之间的接触电阻,同时PDA中存在大量的氨基有利于倒置太阳能电池阴极对电子的收集. 相似文献
16.
Composite material, consisting of nanosized ZnO:Ga(La) embedded in a transparent polymer matrix was prepared. ZnO:Ga(La) was synthesized via photo induced precipitation from aqueous solution containing zinc formate, hydrogen peroxide and gallium nitrate or lanthanum acetate. Solid phase was calcined at 1100 °C to obtain crystalline ZnO:Ga(La) powder (crystallite size ∼ 50 nm) and further processed in reducing atmosphere (H2/Ar) at 800 °C. Resulting material features intensive excitonic luminescence under X-ray excitation, with distinct maximum at ∼392 nm. No defect related luminescence in visible spectral range was observed. Nanocomposite material was then prepared as follows: ZnO:Ga(La) nanopowder was homogeneously dispersed in the solution of urethane dimethacrylate monomers, and the fast UV-induced polymerization was subsequently employed for preparation of optically transparent polyurethane matrix with embedded nanopowder. Radioluminescence properties of prepared nanocomposite are qualitatively similar to those of ZnO:Ga(La) nanopowder. 相似文献
17.
18.
《Composite Interfaces》2013,20(5-6):519-532
The morphology and dynamic mechanical properties of poly(acrylonitrile-butadienestyrene) (ABS)/polycarbonate (PC)/clay nanocomposites were investigated. From the studies of the transmission electron microscopy (TEM) analysis of the ABS/PC (70/30 wt%) nanocomposites with clay, it was observed that most of the clay existed in the ABS phase and the interface of the ABS and PC. From the studies of the scanning electron microscopy (SEM), droplet size of the PC in the ABS/PC/clay nanocomposites did not change significantly with the clay and has been found to be from 1.0 to 1.5 μm when the clay was added up to 5 phr. The small difference of the droplet size of the PC was maybe due to the similar values of the viscosities of the dispersed phase (PC) and continuous phase (ABS). From the dynamic mechanical properties of the ABS/PC/clay nanocomposites, the storage modulus was increased by the addition of the clay at the rubbery state between 120 and 150°C. From the studies of the tan δ of the ABS/PC/clay nanocomposites, it was shown that double tan δ peaks were observed. The height of the lower temperature tan δpeak was decreased from 4.5 to 3.3 when the clay was increased up to 5 phr. The decrease of the height of the lower tan δ peak in the ABS/PC/clay nanocomposites suggested that the ABS chain motion was restricted by the clay in the ABS phase. 相似文献
19.
Graphene-reinforced polymer nanocomposites are under intense investigation in recent years. In this work, graphene nanosheets have been prepared using chemical reduction method of graphene oxide. Graphene-reinforced epoxy nanocomposites show an enhancement in mechanical and thermal properties at 0.05 wt.% of graphene in epoxy matrix. Modification of graphene with polyvinylpyrrolidone (PVP) shows the significant enhancement in mechanical and thermal properties of epoxy nanocomposites. PVP-modified graphene nanosheets reduces the gap of enthalpic and entropic penalties and facilitates improved dispersion of graphene in epoxy matrix. In addition, enhanced dispersion of PVP-modified graphene in epoxy matrix results in better load transfer across graphene–epoxy interface. Glass transition temperature (Tg) of PVP-modified graphene epoxy nanocomposites increases as compared to pure epoxy because there exist an interaction between epoxy and PVP. Fractography study reveals the localized ductile fracture. 相似文献
20.
Solvent-free films of poly (ethylene oxide)–silver triflate (PEO–AgCF3SO3)/MgO-based nanocomposite polymer electrolytes (PEO)50AgCF3SO3–x wt.% MgO (x = 1, 3, 5, 7, and 10) obtained using solution casting technique were found to exhibit an appreciably good complexation of
MgO nanofiller within the polymer electrolyte system and non-Debye type of relaxation as revealed by Fourier transform infrared
and complex impedance analyses. Optimized filler (5 wt.% MgO) when incorporated into the polymer electrolyte resulted in a
maximum electrical conductivity of 2 × 10−6 S cm−1 in conjunction with a silver ionic transference number (t
Ag+) of 0.23 at room temperature (298 K). Detailed structural, thermal, and surface morphological investigation indicated a slight
reduction in the degree of crystallinity owing to the addition of MgO nanofiller. 相似文献