首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
A combined experimental and computational study is performed to investigate the origin and characteristics of the surface features observed in SEM images of thin polymer films deposited in matrix-assisted pulsed laser evaporation (MAPLE). Analysis of high-resolution SEM images of surface morphologies of the films deposited at different fluences reveals that the mass distributions of the surface features can be well described by a power-law, Y(N) ∝ Nt, with exponent −t ≈ −1.6. Molecular dynamic simulations of the MAPLE process predict a similar size distribution for large clusters observed in the ablation plume. A weak dependence of the cluster size distributions on fluence and target composition suggests that the power-law cluster size distribution may be a general characteristic of the ablation plume generated as a result of an explosive decomposition of a target region overheated above the limit of its thermodynamic stability. Based on the simulation results, we suggest that the ejection of large matrix-polymer clusters, followed by evaporation of the volatile matrix, is responsible for the formation of the surface features observed in the polymer films deposited in MAPLE experiments.  相似文献   

2.
The dynamics of the early stages of the ablation plume formation and the mechanisms of cluster ejection are investigated in large-scale molecular dynamics simulations. The cluster composition of the ablation plume has a strong dependence on the irradiation conditions and is defined by the interplay of a number of processes during the ablation plume evolution. At sufficiently high laser fluences, the phase explosion of the overheated material leads to the formation of a foamy transient structure of interconnected liquid regions that subsequently decomposes into a mixture of liquid droplets, gas-phase molecules, and small clusters. The ejection of the largest droplets is attributed to the hydrodynamic motion in the vicinity of the melted surface, especially active in the regime of stress confinement. Spatially resolved analysis of the dynamics of the plume formation reveals the effect of segregation of the clusters of different sizes in the expanding plume. A relatively low density of small/medium clusters is observed in the region adjacent to the surface, where large clusters are being formed. Medium-size clusters dominate in the middle of the plume and only small clusters and monomers are observed near the front of the expanding plume. Despite being ejected from deeper under the surface, the larger clusters in the plume have substantially higher internal temperatures as compared to the smaller clusters. The cluster-size distributions can be relatively well described by a power law Y(N)∼N with exponents different for small, up to ∼15 molecules, and large clusters. The decay is much slower in the high-mass region of the distribution. Received: 13 October 2001 / Accepted: 18 July 2002 / Published online: 25 October 2002 RID="*" ID="*"Corresponding author. Fax: +1-434/982-5660, E-mail: lz2n@virginia.edu  相似文献   

3.
Thin films of poly (lactide-co-glycolide) (PLGA), a biodegradable polymer, were deposited on Si wafers by both conventional pulsed laser deposition (PLD) and matrix assisted pulsed laser evaporation (MAPLE) using chloroform (CHCl3) as a matrix solvent. This research represents an initial study to investigate the deposition characteristics of each technique at comparable conditions to gain insight into the transport and degradation mechanisms of each approach. The deposited materials were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H NMR), and gel permeation chromatography (GPC) with refractive index (RI) detection. While FTIR and NMR results do not show a measurable departure from the native, in sharp contrast GPC results show a significant change (up to 95%) in molecular weight for both deposition methods. This result makes it clear that it is possible to overlook substantial degradation when incomplete chemical analysis is conducted.Optical transmission measurements of the starting MAPLE targets yielded laser penetration depths on the order of 0.362 cm and 0.209 cm for pure CHCl3 and 1 wt. % PLGA in CHCl3, respectively. Straightforward application of the Beer–Lambert law for laser energy deposition predicts a negligible temperature rise of less than 1 K at the target surface, which is in clear contradiction with ablation rates of 1.85 μm/pulse experimentally measured for polymer loaded samples. With an ablation process of this magnitude, the material ejection is likely due to contributions of nonlinear or non-homogeneous laser light absorption rather than evaporation. Severe non-uniformity of the final surface morphologies of the MAPLE films, similar to solvent wicking artifacts found in spin casting supports the spallation scenario in MAPLE. PACS 81.15.Fg; 79.20.Ds; 78.66.Qn; 42.70Jk  相似文献   

4.
Molecular dynamics simulations with an embedded Monte Carlo based reaction scheme were used to study UV ablation of poly(methyl methacrylate) (PMMA) at 157 nm. We discuss the onset of ablation, the formation and distribution of products in the plume and stress relaxation of the polymer matrix. Laser induced heating and bond-breaks are considered as ablation pathways. We show here that depending on the nature of energy deposition the evolution of ablation plume and yield composition can be quite different. If all of photon energy is converted to heat it can set off ablation via mechanical failure of the material in the heated region. Alternatively, if the photon energy goes towards breaking bonds first, it initiates chemical reactions, polymer unzipping and formation of gaseous products inside the substrate. The ejection of these molecules has a hollowing out effect on the substrate which can lead to ejection of larger chunks. No excessive pressure buildup due to creation of gaseous molecules or entrainment of larger polymer chunks is observed in this case.  相似文献   

5.
Coarse-grained molecular dynamics simulations are applied to investigate the origins of the surface features observed in films deposited by the Matrix-Assisted Pulsed Laser Evaporation (MAPLE) technique. The formation of transient balloon-like structures with a polymer-rich surface layer enclosing matrix vapor, observed in earlier simulations of slow heating of polymer-matrix droplets, has been explored in this work at higher rates of thermal energy deposition. Tensile stresses generated in the regime of partial stress confinement are found to induce an internal boiling in the overheated droplets and associated generation of “molecular balloons” at thermal energy densities at which no homogeneous boiling takes place without the assistance of tensile stresses. Simulations of the dynamic processes occurring upon the collision of a polymer-matrix droplet with a substrate provide the molecular-level pictures of the droplet impact phenomenon and reveal the connections between the droplet landing velocity and the shapes of the polymer features observed in scanning electron microscopy images of films deposited in MAPLE experiments. The distinct types of surface features observed in MAPLE experiments, namely, wrinkled “deflated balloons,” localized arrangements of interconnected polymer filaments, and elongated “nanofibers,” are shown to emerge from different scenarios of droplet landing and/or disintegration observed in the simulations.  相似文献   

6.
Poly(9,9-dioctylfluorene) (PFO) polymer films were deposited by matrix-assisted pulsed laser evaporation (MAPLE) technique. The polymer was diluted (0.5 wt%) in tetrahydrofuran and, once cooled to liquid nitrogen temperature, it was irradiated with a KrF excimer laser. 10,000 laser pulses were used to deposit PFO films on 〈1 0 0〉 Si substrates at different temperatures (−16, 30, 50 and 70 °C). One PFO film was deposited with 16,000 laser pulses at a substrate temperature of 50 °C. The morphology, optical and structural properties of the films were investigated by SEM, AFM, PL and FTIR spectroscopy. SEM inspection showed different characteristic features on the film surface, like deflated balloons, droplets and entangled polymer filaments. The roughness of the films was, at least partially, controlled by substrate heating, which however had the effect to reduce the deposition rate. The increase of the laser pulse number modified the target composition and increased the surface roughness. The angular distribution of the material ejected from the target confirmed the forward ejection of the target material. PFO films presented negligible modification of the chemical structure respect to the bulk material.  相似文献   

7.
采用丝网印刷工艺制作了碳纳米管(CNTs)薄膜阴极.经适当能量激光烧蚀后,相互粘连的CNTs随表面粘附有机物的蒸发而分散开,管间隙增加、屏蔽效应减小,使得场发射性能大幅度提高,开启场强降低、场倍增因子β增大.Raman光谱分析表明,随激光能量增加,CNTs表面缺陷增多,成为新的场发射点,对其β增大的贡献加强.相对于两电极结构,三电极中平栅极结构场发射性能经激光烧蚀有更显著的改善.这说明激光烧蚀是提高CNTs场发射性能的有效方法. 关键词: 碳纳米管薄膜 场发射 激光烧蚀 Raman光谱  相似文献   

8.
Theoretical predictions suggested that particulates (large clusters and droplets) in pulsed-laser ablation deposition (PLD) move towards the surface normal and constitute a small fraction of the total plume mass. Contrary to expectations, here we report that, independently of the laser beam direction, large clusters are ejected towards the laser direction of incidence, which generally differs from the surface normal. Moreover, fragments and droplets constitute the major fraction of the ablated mass. Cross-sectional SEM investigations performed on the Si targets show that the direction of growth of the columns follows the laser beam direction. These observations have been explained by the change of the microscopic ablation mechanism from monomer evaporation at low local laser fluences to phase explosion at higher local fluences.  相似文献   

9.
Thin films of the conducting polymer poly(3,4-ethylenedioxy-thiophene):poly(styrenesulfonate) (PEDOT:PSS) were deposited by resonant infrared laser vapor deposition (RIR-LVD). The PEDOT:PSS was frozen in various matrix solutions and deposited using a tunable, mid-infrared free-electron laser (FEL). The films so produced exhibited morphologies and conductivities that were highly dependent on the solvent matrix and laser irradiation wavelength used. When deposited from a native solution (1.3% by weight in water), as in matrix-assisted pulsed laser evaporation (MAPLE), films were rough and electrically insulating. When the matrix included other organic “co-matrices” that were doped into the solution prior to freezing, however, the resulting films were smooth and exhibited good electrical conductivity (0.2 S/cm), but only when irradiated at certain wavelengths. These results highlight the importance of the matrix/solute and matrix/laser interactions in the ablation process.  相似文献   

10.
Previous molecular dynamics (MD) simulations of ultraviolet (UV) laser ablation demonstrate the distinct dependence of material ejection on laser fluence and laser pulse duration. In this paper, we examine the pulse width dependence when the laser pulse widths are appropriate for the thermal confinement regime. We perform MD simulations of laser ablation with a laser pulse duration of 1 ns and compare with a pulse width of 150 ps as in previous simulations. The simulations confirm that the pulse width in thermal confinement regime does not dramatically influence the molecular ejection mechanism. The simulations reveal differentiations, however, in plume composition and the ablation threshold value. PACS 02.70.Ns; 61.80.Az; 79.20.Ap  相似文献   

11.
To study the role of the solvent and of the laser fluence in the matrix-assisted pulsed laser evaporation (MAPLE) process, we used a soft polymer (polydimethylsiloxane—PDMS) as “sensing surface” and toluene as solvent. Thin films of the PDMS polymer were placed in the position of the growing film, while a frozen toluene target was irradiated with an ArF laser at the conventional fluences used in MAPLE depositions (60–250 mJ/cm2). Apart the absence of solute, the MAPLE typical experimental conditions for the deposition of thin organic layers were tested. The effects on the PDMS films of the toluene target ablation, at different fluences, were studied using atomic force microscopy and contact angles measurements. The results were compared with the effects produced on similar PDMS films by four different treatments (exposure to a drop of the solvent, to saturated toluene vapors and to plasma sources of two different powers). From this comparative study, it appears that depending on the MAPLE experimental conditions: (1) the MAPLE process may be “semidry” rather than purely dry (namely the solvent is likely to be present in the deposition environment near the growing film), (2) the solvent, if sufficiently volatile, is in form of vapor molecules (neutral, ionized and probably dissociated) rather than in liquid phase near the substrate and (3) at relatively high laser fluences (>150 mJ/cm2), the formation of an intense plasma plume results which can damage/affect a soft substrate as well as a growing polymer film.  相似文献   

12.
Laser ablation of either Ni or Fe is used to create nanoparticles within a reactive flame environment for catalysis of carbon nanotubes (CNTs). Ablation of Fe in a CO-enriched flame produces single-walled nanotubes, whereas, ablation of Ni in an acetylene-enriched flame produces carbon nanofibers. These results illustrate that the materials for catalyst particle formation and CNT, SWNT or nanofiber, inception and growth in the aerosol phase can be supplied from separate sources; a metal-carbon mixture produced by condensation is not necessary. Both particle formation and CNT inception can begin from molecular species in a laser-ablation approach within the complex chemical environment of a flame. Moreover, SWNTs and nanofibers can be synthesized within very short timescales, of the order of tens of milliseconds. Finally, high-intensity pulsed laser light can destroy CNTs through either vaporization or coalescence induced by melting. PACS 42.62 Fi; 81.05.Tp; 82.80.Ch; 81.15 Fg  相似文献   

13.
14.
Eumelanin is an important pigment almost ubiquitous in animals and plants exhibiting interesting charge transport capabilities. Its poor solubility in common solvents represents a severe limitation for preparing thin films. It was recently demonstrated that eumelanin films can be successfully deposited with the MAPLE (Matrix Assisted Pulsed Laser Evaporation) technique starting from a frozen water suspension, using infrared laser radiation. The low laser absorption of ice together with the high absorption of eumelanin suggests that the target ablation is due to laser energy absorbed by the eumelanin molecules, followed by thermal energy transfer, and ejection of ice/water/vapor containing undamaged eumelanin molecules and supramolecular structures.  相似文献   

15.
16.
The unexpected presence of agglomerates in polymer films deposited by the Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique is discussed. Many experimental and theoretical works suggest that the simple model of individual molecule evaporation must be abandoned. Solute concentration, boiling temperature and vapor pressure of solvents, laser pulse number, and laser light penetration depth are important parameters to be considered to explain the morphology of the MAPLE deposited films. Nanorods films, which can be efficiently deposited on rough surfaces using the MAPLE technique, present more or less large surface droplets, also. Here, the reduced melting temperature of nanostructured materials can explain agglomeration even at low laser fluences.  相似文献   

17.
In the process of pulsed laser deposition of nickel (Ni) and ruthenium (Ru) thin films, the occurrence of phase explosion in ablation was found to affect the deposition rate and enhance the optical emissions from the plasma plume. Faster thin-film growth rates coincide with the onset of phase explosion as a result of superheating and/or sub-surface boiling which also increased the particulates found on the thin-film surface. These particulates were predominantly droplets which may not be round but flattened and also debris for the case of silicon (Si) ablation. The droplets from Ni and Ru thin films were compared in terms of size distribution and number density for different laser fluences. The origins of these particulates were correlated to the bubble and ripple formations on the targets while the transfer to the thin film surface was attributed to the laser-induced ejection from the targets.  相似文献   

18.
A detailed understanding of the physical determinants of the ablation rate in multiple nanosecond laser pulses regime is of key importance for technological applications such as patterning and pulsed-laser deposition. Here, theoretical modeling is employed to investigate the ablation of thick metallic plates by intense, multiple nanosecond laser pulses. A new photo-thermal model is proposed, in which the complex phenomena associated to the ablation process are accounted for as supplementary terms of the classical heat equation. The pulsed laser ablation in the nanosecond regime is considered as a competition between thermal vapourization and melt ejection under the action of the plasma recoil pressure. Computer simulations using the photo-thermal model presented here and the comparison of the theoretical results with experiment indicate two different mechanisms that contribute to the decrease of the ablation efficiency. First, during the ablation process the vapour/plasma plume expanding above the irradiated target attenuates the laser beam that reaches the sample, leading to a marked decrease of the ablation efficiency. Additional attenuation of the laser beam incident on the sample is produced due to the heating of the plasma by the absorption of the laser beam into the plasma plume. The second mechanism by which the ablation efficiency decreases consists of the reduction of the incident laser intensity with the lateral area, and of the melt ejection velocity with the depth of the hole.  相似文献   

19.
ABSTRACT

Single-wall carbon nanotubes (CNTs) have been suggested as potential materials for use in next-generation gas sensors. The sidewall functionalisation of CNTs facilitates gas molecule adsorption. In this study, density functional theory (DFT)-based ab initio molecular dynamics simulations are performed for a periodic zigzag single-wall (4,0) CNT surrounded by a monolayer of hydrogen peroxide molecules in an attempt to find conditions that favour sidewall functionalisation. The dependency of dynamics on charge states of the system is examined. It is found negative charges favour reactions that result in the functionalisation of the CNT. First principles molecular dynamics of defect formation yields chemically reasonable structure of stable defects, which can be reproduced in CNTs of any diameter and chirality. The explored hydroxyl and hydroperoxyl defects increase conductivity in a large diameter (10,0) CNT, while decrease conductivities in a small diameter (4,0) CNT.  相似文献   

20.
The key spatial and temporal scales for single-wall carbon nanotube (SWNT) synthesis by laser vaporization at high temperatures are investigated with laser-induced luminescence imaging and spectroscopy. Graphite/(Ni, Co) targets are ablated under typical synthesis conditions with a Nd:YAG laser at 1000 °C in a 2-in. quartz tube reactor in flowing 500-Torr Ar. The plume of ejected material is followed for several seconds after ablation using combined imaging and spectroscopy of Co atoms, C2 and C3 molecules, and clusters. The ablation plume expands in stages during the first 200 7s after ablation and displays a self-focusing behavior. Interaction of the plume with the background gas forms a vortex ring which segregates and confines the vaporized material within a ~1-cm3 volume for several seconds. Using time-resolved spectroscopy and spectroscopic imaging, the time for conversion of atomic and molecular species to clusters was measured for both carbon (200 7s) and cobalt (2 ms) at 1000 °C. This rapid conversion of carbon to nanoparticles, combined with transmission electron microscopy analysis of the collected deposits, indicate that nanotube growth occurs over several seconds in a plume of mixed nanoparticles. By adjusting the time spent by the plume within the high-temperature zone using these in situ diagnostics, single-walled nanotubes of controlled (~100 nm) length were grown and the first estimate of a growth rate on single laser shots (0.2 7m/s) was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号