首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Limited natural resources and an increasing demand for enantiomerically pure compounds render catalysis and especially heterogeneous asymmetric catalysis a key technology. The field has rapidly advanced from the initial use of chiral biopolymers, such as silk, as a support for metal catalysts to the modern research areas. Mesoporous supports, noncovalent immobilization, metal-organic catalysts, chiral modifiers: many areas are rapidly evolving. This Review shows that these catalysts have more to them than facile separation or recycling. Better activities and selectivities can be obtained than with the homogeneous catalyst and novel, efficient reaction mechanisms can be employed. Especially fascinating is the outlook for highly ordered metal-organic catalysts that might allow a rational design, synthesis, and the unequivocal structural characterization to give tailor-made catalysts.  相似文献   

2.
Supported metal nanoparticles hold great promise in heterogeneous catalysis as active and reusable catalysts for various organic transformations. Preparation methods of metal nanoparticles with excellent control over size, shape, and morphology on supports has significantly advanced to improve the performances of the resulting catalysts. Here, we aim to discuss the development of supported metal nanoparticles on mesoporous silica SBA‐15 in the presence of immobilized ionic liquids mostly based on examples from the previously reported results. This review highlights the preparation methods for size‐controlled syntheses and the immobilization of metal nanoparticles on solid supports, especially SBA‐15 by various techniques.  相似文献   

3.
传统的Lewis酸催化剂在环境的压力下受到挑战,全氟烷基磺酸盐和全氟烷基磺酰亚胺盐作为均相、高效的Lewis酸催化剂在有机合成中受到人们的关注.为了简化分离操作,人们对全氟烷基磺酸盐和全氟烷基磺酰亚胺盐的多相化进行了研究,并已取得巨大进展.本文综述了全氟烷基磺酸盐和全氟烷基磺酰亚胺盐分别负载在有机载体、无机载体以及离子液体上的多相化催化最新研究进展,简要概括了其制备方法和催化活性,并对其催化应用前景进行了展望.  相似文献   

4.
Asymmetric hydrogenation, a seminal strategy for the synthesis of chiral molecules, remains largely unmet in terms of activation by non-metal sites of heterogeneous catalysts. Herein, as demonstrated by combined computational and experimental studies, we present a general strategy for integrating rationally designed molecular chiral frustrated Lewis pair (CFLP) with porous metal–organic framework (MOF) to construct the catalyst CFLP@MOF that can efficiently promote the asymmetric hydrogenation in a heterogeneous manner, which for the first time extends the concept of chiral frustrated Lewis pair from homogeneous system to heterogeneous catalysis. Significantly, the developed CFLP@MOF, inherits the merits of both homogeneous and heterogeneous catalysts, with high activity/enantio-selectivity and excellent recyclability/regenerability. Our work not only advances CFLP@MOF as a new platform for heterogeneous asymmetric hydrogenation, but also opens a new avenue for the design and preparation of advanced catalysts for asymmetric catalysis.  相似文献   

5.
Chiral bis(oxazoline) ligands have been applied in many enatioselective reactions. Recently, studies of the immobilization of bis(oxazoline) on both soluble and insoluble supports have been of great interest. Among the different methods to anchor the homogeneous catalysts, a soluble, polymer-supported catalyst usually achieves higher stereoselectivity and activity because the catalysis can be separated and recycled via simple methods such as solvent precipitation. Dendrimers are highly branche…  相似文献   

6.
汪海明  王正  丁奎岭 《化学进展》2010,22(7):1471-1481
催化剂的负载和回收再利用是提高其使用效率、降低反应成本和减少金属离子对产物污染的一条有效途径。与传统的负载模式不同, 手性自负载催化剂通过含双或多官能团的手性配体与金属通过自组装形成一类有机-无机聚合物,因此无需使用任何载体,即能够有效地实现手性催化剂的回收和再利用。近年来,手性自负载催化剂作为一种新的负载模式,已经成功地应用于一些非均相催化的不对称反应中。本文概述了手性自负载催化剂的在一些不对称催化反应研究中取得的新进展。  相似文献   

7.
石磊  王正  王兴旺  李明星  丁奎岭 《有机化学》2006,26(10):1444-1456
较系统地介绍了手性催化剂负载的一种新方法(即“自负载”策略)及其在非均相不对称催化反应中应用的最新进展. 与传统的负载模式不同, “自负载”策略中利用含双或多官能团的配体与金属通过自组装形成的有机-无机聚合物做为催化剂, 因此不需使用任何载体. “自负载”手性催化剂在若干非均相不对称催化反应中显示了优秀的催化活性和对映选择性并且能够简单回收再利用, 为手性催化剂的负载化提供了一个新的策略.  相似文献   

8.
以低聚苯乙烯基膦酸-磷酸氢锆(ZSPP)作为载体, 对该载体进行氯甲基化、磺酸化修饰后与手性Salen Mn(Ⅲ)轴向配位, 合成了一种新固载型手性Salen Mn(Ⅲ)催化剂; 采用FTIR,DR UV-Vis, AAS, SEM, TEM, TG和N2吸附等手段对催化剂进行了表征. 以苯乙烯不对称环氧化为探针反应, 初步考察了催化剂在不同氧源、 反应温度、 反应时间和催化剂用量等因素下的催化性能. 结果表明, 该催化剂具有良好的催化活性, 转化率最高达到85%, 选择性为90%, e.e.值为64%. 固载手性Salen Mn(Ⅲ)催化剂性质稳定, 能循环使用6次.  相似文献   

9.
烯烃的不对称环氧化物通过选择性开环或者官能团的转化,可以生成一系列有价值的手性化合物,被广泛用作医药、农药、香料等精细化学品的合成中间体.手性Mn(salen)金属配合物被证明是烯烃不对称环氧化最有效的催化剂之一.本文综述了近年来均相手性Mn(salen)催化剂、有机聚合物固载的手性Mn(salen)、无机载体固载手性...  相似文献   

10.
The development of heterogeneous asymmetric catalysts has attracted increasing interest in synthetic chemistry but mostly relies on the immobilization of homogeneous chiral catalysts. Herein, a series of chiral metal–organic frameworks (MOFs) have been fabricated by anchoring similar chiral hydroxylated molecules (catalytically inactive) with different lengths onto Zr-oxo clusters in achiral PCN-222(Cu). The resulting chiral MOFs exhibit regulated enantioselectivity up to 83 % ee in the asymmetric ring-opening of cyclohexene oxide. The chiral molecules furnished onto the catalytic Lewis sites in the MOF create multilevel microenvironment, including the hydrogen interaction between the substrate and the chiral −OH group, the steric hindrance endowed by the benzene ring on the chiral molecules, and the proximity between the catalytic sites and chiral molecules confined in the MOF pores, which play crucial roles and synergistically promote chiral catalysis. This work nicely achieves heterogeneous enantioselective catalysis by chiral microenvironment modulation around Lewis acid sites.  相似文献   

11.
The activity and enantiomeric excess (ee) (in some cases >85%) obtained for the asymmetric addition of trimethylsilyl cyanide to aldehydes using different heterogeneous chiral catalysts are compared. A library of recoverable catalysts was developed by immobilization of a chiral vanadyl salen complex having a terminal carbon-carbon double bond onto a series of scaffolds including silica, single-wall carbon nanotubes, activated carbon and room-temperature ionic liquids. The covalent linkage has been achieved by radical initiated addition of mercapto groups to CC. The highest enantiomeric excesses, similar to those obtained in the homogeneous phase, were achieved using silica as support or with the homogeneous tetra-tert-butyl salen catalyst dissolved in an imidazolium ionic liquid. The use of silica as support permits an easier separation and reuse of the catalyst from the reaction media.  相似文献   

12.
A novel interfacial hybrid epoxidation catalyst was designed with a new immobilization method for homogeneous catalysts by coating an inorganic support with an organic polymer film containing active sites. The titanium silsesquioxane (TiPOSS) complex, which contains a single-site titanium active center, was immobilized successfully by in-situ copolymerization on a mesoporous SBA-15-supported polystyrene polymer. The resulting hybrid materials exhibit attractive textural properties (highly ordered mesostructure, large specific surface area (>380 m2 g-1) and pore volume (>or==0.46 cm3 g-1)), and high activity in the epoxidation of alkenes. In the epoxidation of cyclooctene with tert-butyl hydrogen peroxide (TBHP), the hybrid catalysts have rate constants comparable with that of their homogeneous counterpart, and can be recycled at least seven times. They can also catalyze the epoxidation of cyclooctene with aqueous H2O2 as the oxidant. In two-phase reaction media, the catalysts show much higher activity than their homogeneous counterpart due to the hydrophobic environment around the active centers. They behave as interfacial catalysts due to their multifunctionality, that is, the hydrophobicity of polystyrene and the polyhedral oligomeric silsesquioxanes (POSS), and the hydrophilicity of the silica and the mesoporous structure. Combination of the immobilization of homogeneous catalysts on two conventional supports, inorganic solid and organic polymer, is demonstrated to achieve novel heterogeneous catalytic ensembles with the merits of attractive textural properties, tunable surface properties, and optimized environments around the active sites.  相似文献   

13.
《中国化学快报》2023,34(6):107959
Metal-based catalysis, including homogeneous and heterogeneous catalysis, plays a significant role in the modern chemical industry. Heterogeneous catalysis is widely used due to the high efficiency, easy catalyst separation and recycling. However, the metal-utilization efficiency for conventional heterogeneous catalysts needs further improvement compared to homogeneous catalyst. To tackle this, the pursing of heterogenizing homogeneous catalysts has always been attractive but challenging. As a recently emerging class of catalytic material, single-atom catalysts (SACs) are expected to bridge homogeneous and heterogeneous catalytic process in organic reactions and have arguably become the most active new frontier in catalysis field. In this review, a brief introduction and development history of single-atom catalysis and SACs involved organic reactions are documented. In addition, recent advances in SACs and their practical applications in organic reactions such as oxidation, reduction, addition, coupling reaction, and other organic reactions are thoroughly reviewed. To understand structure-property relationships of single-atom catalysis in organic reactions, active sites or coordination structure, metal atom-utilization efficiency (e.g., turnover frequency, TOF calculated based on active metal) and catalytic performance (e.g., conversion and selectivity) of SACs are comprehensively summarized. Furthermore, the application limitations, development trends, future challenges and perspective of SAC for organic reaction are discussed.  相似文献   

14.
Abstract

Homogeneous colloidal dispersions of ultrafine noble metal particles have been prepared by the reduction of the corresponding metal ions in the presence of protective polymers. These colloidal metal particles show effective and selective catalyses in hydrogenation of olefins’. However, separation of these homogeneous catalysts from reaction mixtures for the repeated use is difficult. Thus, immobilization of these colloidal metal particles to supports is required. This paper reports immobilization of colloidal rhodium particles onto polymer support by use of covalent bonding between the protective polymer and the support. Activities and selectivities of the resultant immobilized catalysts for hydrogenation of olefins are shown.  相似文献   

15.
侯晨  朱浩  李亦婧  李彦锋 《化学进展》2012,(9):1729-1741
脯氨酸及其衍生物作为有机手性催化剂,在不对称有机合成中得到广泛应用。该类催化剂具有结构简单、来源丰富和选择性高等优点,但仍存在催化剂用量大、难以回收以及无法重复利用等不足。近年来,随着固定化技术的发展,固定化脯氨酸及其衍生物受到广泛关注。固定化脯氨酸及其衍生物催化剂可以简化不对称催化中产物的分离过程,实现催化剂的便利回收与循环使用。本文综述了固定化脯氨酸及其衍生物的制备及在催化不对称有机合成(如Aldol反应、Michael加成反应、Mannich反应等)中的研究进展。  相似文献   

16.
The development of cheap, effective and heterogeneous catalysts remains a substantial challenge in organic synthesis. Of the extensive heterogeneous catalysis, biochar materials have attracted increasing attention to be considered as an important class of support materials in organic reactions due to their distinctive characteristics such as high porosity, large specific surface area, high adsorption ability, excellent cation exchange capacity and outstanding stability. This review highlights recent advances over the past 5 years, outlining the synthetic methods of biochar materials and their applications as catalysts or catalyst supports in a range of organic reactions including oxidation, reduction, esterification, coupling, alkylation and multi-component reactions.  相似文献   

17.
近年来,负载型金催化剂被视为多相催化工业化进程中的机遇和挑战,因而广受研究.载体的选取可以有效调控纳米金催化剂的化学结构及催化活性.针对载体本身对反应是否具有活性,可将其分为活性载体与惰性载体.活性载体主要为具有还原性的金属氧化物;而惰性载体,诸如碳基材料、氧化硅、氧化铝等,多为反应条件下不具备还原性或不可进行还原处理的材料,不释放活性氧物种,通常不具备显著催化活性.一般情况下,活性载体负载的金纳米粒子(Au NPs)在CO氧化反应、醇类选择性氧化反应、水煤气变换等多相催化反应中均展现出优越的催化活性及目标产物的选择性;而以传统不可还原性材料负载Au NPs时,若非采用特殊的优化手段,该类金催化剂的活性及稳定性通常差强人意.尽管如此,不可还原材料作为惰性载体,亦展现出无与伦比的独特优势,例如其多具有易于调控的表面性能、可调变的多样化微观结构,丰富的地壳储量和易于大规模产业化的优势等.因此,针对不可还原材料负载的纳米金催化剂,探讨创新性的改性手段及其对金催化剂活性与稳定性的理性调控,成为近年来纳米金催化领域中最引人关注的研究课题之一.然而到目前为止,基于惰性载体负载金催化剂的系统性总结工作仍未见报道.作者及其所在团队围绕Au-载体/助剂表界面性质的精准调控及理性验证,以CO氧化与醇类选择氧化等反应为探针,对基于不可还原材料的纳米金催化剂的设计理念和改性手段进行了多尺度的探索.基于本组研究工作及近十年相关文献报道,本综述将以几种典型的不可还原材料为例,针对负载型金催化剂的研究进展进行详尽的阐述.从催化剂设计的理论设想和实践方案入手,对特殊结构材料的独创性研制手段、二元金属掺杂及表面功能化手段、特殊氛围处理等备受关注的改性手段进行归纳.并进一步对改性手段影响表面化学结构、电子结构、Au-载体/助剂间的相互/协同作用、催化剂形貌的实例以及水物种参与对反应的影响等方面展开对比讨论.本综述旨在为致力于金催化研究工作及有志在该领域一展抱负的研究者拓展新的方向,全面诠释不可还原材料作为惰性载体在金催化领域的巨大应用前景,进一步激发不可还原载体负载金催化剂开发的新思路,推动纳米金催化的工业化进程.  相似文献   

18.
The development of heterogeneous chiral catalysts for enantioselective reactions is highly desirable in order to overcome some drawbacks of homogeneous catalysts. Different from the conventional approaches by using various types of supports or biphasic systems for the recovery and reuse of homogeneous catalysts, a conceptually new strategy for heterogenization of homogeneous chiral catalysts, that is, a "self-supporting" approach, has been developed to use homochiral metal-organic coordination polymers generated by the self-assembly of chiral multitopic ligands with metal ions, and thus obviates the use of any support. In this concept article, the success of this "self-supporting" strategy will be exemplified in heterogeneous catalysis of asymmetric carbonyl-ene, sulfoxidation, epoxidation, and asymmetric hydrogenation reactions.  相似文献   

19.
The synthesis of catalytic filamentous carbon (CFC) on a Ni catalyst supported by homogeneous precipitation onto the surface of aluminosilicate ceramic supports (honeycomb monoliths, ceramic foam, glass foam, and haydite) was studied. The effects of CFC synthesis conditions (the catalyst concentration on a support, the pyrolysis temperature of a propane-butane mixture, and the composition of the gas mixture) on the specific surface areas of supports, the yield of carbon, and the morphology of a surface CFC layer were examined. As found by scanning electron microscopy, the uniformity of distribution and the size of carbon nanofibers synthesized depended on the conditions of their synthesis. The resulting CFC-containing supports were tested as adsorbents for the immobilization of enzymatically active substances (individual enzymes, cell membranes, and microorganisms) in order to prepare highly stable heterogeneous catalysts for biotechnology and biocatalysis.  相似文献   

20.
Immobilized molybdovanadophosphoric acids onto organically surface-modified silica aerogels were successfully prepared and investigated in heterogeneous catalysis of anthracene oxidation. The catalysts were obtained by supporting mono- and di-vanadium substituted molybdophosphoric acids on hybrid silica materials synthesized via the sol–gel process followed by surface amino-functionalization. The FTIR, DR UV–vis, and AA spectroscopy confirmed the loading and distribution of the polyoxometalate molecules on the surface of the aerogels. The nitrogen adsorption–desorption technique revealed a systematic decrease in the specific surface area and pore volume after the immobilization of the polyoxometalates. The application of the supported molecules as catalysts for anthracene oxidation showed 100% selectivity for 9,10-anthraquinone as opposed to the reactions conducted under homogeneous conditions. Moreover, at certain conditions, the catalytic activity of the supported polyoxometalates was greater than their corresponding free polyoxometalates with a clear effect of the surface chemical groups of the supporting silica aerogels. Additionally, the oxidant and solvent nature showed a crucial effect on the catalytic activity and selectivity of the immobilized polyoxometales. The heterogeneous catalysts were regenerated and reused over consecutive catalytic cycles reflecting a potential economic interest in these materials besides their high efficiency in heterogeneous catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号