首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper deals with the 0/1 knapsack polytope. In particular, we introduce the class ofweight inequalities. This class of inequalities is needed to describe the knapsack polyhedron when the weights of the items lie in certain intervals. A generalization of weight inequalities yields the so-called “weight-reduction principle” and the class of extended weight inequalities. The latter class of inequalities includes minimal cover and (l,k)-configuration inequalities. The properties of lifted minimal cover inequalities are extended to this general class of inequalities.  相似文献   

2.
The Integer Knapsack Problem with Set-up Weights (IKPSW) is a generalization of the classical Integer Knapsack Problem (IKP), where each item type has a set-up weight that is added to the knapsack if any copies of the item type are in the knapsack solution. The k-item IKPSW (kIKPSW) is also considered, where a cardinality constraint imposes a value k on the total number of items in the knapsack solution. IKPSW and kIKPSW have applications in the area of aviation security. This paper provides dynamic programming algorithms for each problem that produce optimal solutions in pseudo-polynomial time. Moreover, four heuristics are presented that provide approximate solutions to IKPSW and kIKPSW. For each problem, a Greedy heuristic is presented that produces solutions within a factor of 1/2 of the optimal solution value, and a fully polynomial time approximation scheme (FPTAS) is presented that produces solutions within a factor of ε of the optimal solution value. The FPTAS for IKPSW has time and space requirements of O(nlog n+n/ε 2+1/ε 3) and O(1/ε 2), respectively, and the FPTAS for kIKPSW has time and space requirements of O(kn 2/ε 3) and O(k/ε 2), respectively.  相似文献   

3.
In this paper we study the problem where an optimal solution of a knapsack problem on n items is known and a very small number k of new items arrive. The objective is to find an optimal solution of the knapsack problem with n+k items, given an optimal solution on the n items (reoptimization of the knapsack problem). We show that this problem, even in the case k=1, is NP-hard and that, in order to have effective heuristics, it is necessary to consider not only the items included in the previously optimal solution and the new items, but also the discarded items. Then, we design a general algorithm that makes use, for the solution of a subproblem, of an α-approximation algorithm known for the knapsack problem. We prove that this algorithm has a worst-case performance bound of , which is always greater than α, and therefore that this algorithm always outperforms the corresponding α-approximation algorithm applied from scratch on the n+k items. We show that this bound is tight when the classical Ext-Greedy algorithm and the algorithm are used to solve the subproblem. We also show that there exist classes of instances on which the running time of the reoptimization algorithm is smaller than the running time of an equivalent PTAS and FPTAS.  相似文献   

4.
In this paper, a new robust H filtering problem for uncertain time-delay systems is considered. Based on the Lyapunov method, a design criterion of the robust H filter, in which the filtering process remains asymptotically stable for all admissible uncertainties and the transfer function from the disturbance inputs to error state outputs satisfies the prespecified H norm upper bound constraint, is derived in terms of matrix inequalities. The inequalities can be solved easily by efficient convex optimization algorithms. A numerical example is included to illustrate the validity of the proposed design approach.  相似文献   

5.
class of facet defining inequalities for the generalized assignment problem is derived. These inequalities are based upon multiple knapsack constraints and are derived from (1,k)-configuration inequalities.Partial financial support under NSF grant #CCR-8812736.Partial financial support under NSF grant #DMS-8606188.  相似文献   

6.
For a bounded system of linear equalities and inequalities, we show that the NP-hard 0-norm minimization problem is completely equivalent to the concave p -norm minimization problem, for a sufficiently small p. A local solution to the latter problem can be easily obtained by solving a provably finite number of linear programs. Computational results frequently leading to a global solution of the 0-minimization problem and often producing sparser solutions than the corresponding 1-solution are given. A similar approach applies to finding minimal 0-solutions of linear programs.  相似文献   

7.
We study a general subgradient projection method for minimizing a quasiconvex objective subject to a convex set constraint in a Hilbert space. Our setting is very general: the objective is only upper semicontinuous on its domain, which need not be open, and various subdifferentials may be used. We extend previous results by proving convergence in objective values and to the generalized solution set for classical stepsizes t k →0, ∑t k =∞, and weak or strong convergence of the iterates to a solution for {t k }∈ℓ2∖ℓ1 under mild regularity conditions. For bounded constraint sets and suitable stepsizes, the method finds ε-solutions with an efficiency estimate of O-2), thus being optimal in the sense of Nemirovskii. Received: October 4, 1998 / Accepted: July 24, 2000?Published online January 17, 2001  相似文献   

8.
For any >0, we present an algorithm which takes as input a semi-algebraic set, S, defined by P 1≤0,…,P s ≤0, where each P i R[X 1,…,X k ] has degree≤2, and computes the top Betti numbers of S, b k−1(S),…,b k (S), in polynomial time. The complexity of the algorithm, stated more precisely, is . For fixed , the complexity of the algorithm can be expressed as , which is polynomial in the input parameters s and k. To our knowledge this is the first polynomial time algorithm for computing nontrivial topological invariants of semialgebraic sets in R k defined by polynomial inequalities, where the number of inequalities is not fixed and the polynomials are allowed to have degree greater than one. For fixed s, we obtain, by letting =k, an algorithm for computing all the Betti numbers of S whose complexity is . An erratum to this article can be found at  相似文献   

9.
We introduce a new class of second-order cover inequalities whose members are generally stronger than the classical knapsack cover inequalities that are commonly used to enhance the performance of branch-and-cut methods for 0–1 integer programming problems. These inequalities result by focusing attention on a single knapsack constraint in addition to an inequality that bounds the sum of all variables, or in general, that bounds a linear form containing only the coefficients 0, 1, and –1. We provide an algorithm that generates all non-dominated second-order cover inequalities, making use of theorems on dominance relationships to bypass the examination of many dominated alternatives. Furthermore, we derive conditions under which these non-dominated second-order cover inequalities would be facets of the convex hull of feasible solutions to the parent constraints, and demonstrate how they can be lifted otherwise. Numerical examples of applying the algorithm disclose its ability to generate valid inequalities that are sometimes significantly stronger than those derived from traditional knapsack covers. Our results can also be extended to incorporate multiple choice inequalities that limit sums over disjoint subsets of variables to be at most one.   相似文献   

10.
In the present article, we investigate the properties of bivariate Fibonacci polynomials of order k in terms of the generating functions. For k and (1 ≤ k − 1), the relationship between the bivariate Fibonacci polynomials of order k and the bivariate Fibonacci polynomials of order is elucidated. Lucas polynomials of order k are considered. We also reveal the relationship between Lucas polynomials of order k and Lucas polynomials of order . The present work extends several properties of Fibonacci and Lucas polynomials of order k, which will lead us a new type of geneses of these polynomials. We point out that Fibonacci and Lucas polynomials of order k are closely related to distributions of order k and show that the distributions possess properties analogous to the bivariate Fibonacci and Lucas polynomials of order k.  相似文献   

11.
It is shown that the entropy function H(N 1,…,N k ) on finite dimensional von Neumann subalgebras of a finite von Neumann algebra attains its maximal possible value H(⋁ℓ=1k N ) if and only if there exists a maximal abelian subalgebra A of ⋁ℓ=1k N such that A=⋁ℓ=1k(AN ). Oblatum 24-IV-1997 & 6-V-1997  相似文献   

12.
 A dynamic knapsack set is a natural generalization of the 0-1 knapsack set with a continuous variable studied recently. For dynamic knapsack sets a large family of facet-defining inequalities, called dynamic knapsack inequalities, are derived by fixing variables to one and then lifting. Surprisingly such inequalities have the simultaneous lifting property, and for small instances provide a significant proportion of all the facet-defining inequalities. We then consider single-item capacitated lot-sizing problems, and propose the joint study of three related sets. The first models the discrete lot-sizing problem, the second the continuous lot-sizing problem with Wagner-Whitin costs, and the third the continuous lot-sizing problem with arbitrary costs. The first set that arises is precisely a dynamic knapsack set, the second an intersection of dynamic knapsack sets, and the unrestricted problem can be viewed as both a relaxation and a restriction of the second. It follows that the dynamic knapsack inequalities and their generalizations provide strong valid inequalities for all three sets. Some limited computation results are reported as an initial test of the effectiveness of these inequalities on capacitated lot-sizing problems. Received: March 28, 2001 / Accepted: November 9, 2001 Published online: September 27, 2002 RID="★" ID="★" Research carried out with financial support of the project TMR-DONET nr. ERB FMRX–CT98–0202 of the European Union. Present address: Electrabel, Louvain-la-Neuve, B-1348 Belgium. Present address: Electrabel, Louvain-la-Neuve, B-1348 Belgium. Key words. knapsack sets – valid inequalities – simultaneous lifting – lot-sizing – Wagner-Whitin costs  相似文献   

13.
In this paper, we investigate the problem of robust H control for singular systems with polytopic time-varying parameter uncertainties. By introducing the notion of generalized quadratic H performance, the relationship between the existence of a robust H dynamic state feedback controller and that of a robust H static state feedback controller is given. By using matrix inequalities, the existence conditions of robust H static state feedback and dynamic output feedback controllers are derived. Moreover, the design methods for such controllers are provided in terms of the solutions of matrix inequalities. An example is also presented to demonstrate the validity of the proposed methods. __________ Translated from Journal of Northeastern University (Natural Science), 2004, 25(2): 110–113  相似文献   

14.
We are concerned with a variation of the knapsack problem as well as of the knapsack sharing problem, where we are given a set of n items and a knapsack of a fixed capacity. As usual, each item is associated with its profit and weight, and the problem is to determine the subset of items to be packed into the knapsack. However, in the problem there are s players and the items are divided into s + 1 disjoint groups, Nk (k = 0, 1,  , s). The player k is concerned only with the items in N0  Nk, where N0 is the set of ‘common’ items, while Nk represents the set of his own items. The problem is to maximize the minimum of the profits of all the players. An algorithm is developed to solve this problem to optimality, and through a series of computational experiments, we evaluate the performance of the developed algorithm.  相似文献   

15.
The well-known characterization indicated in the title involves the moving maximal dyadic averages of the sequence (X k : k = 1, 2, …) of random variables in Probability Theory. In the present paper, we offer another characterization of the SLLN which does not require to form any maximum. Instead, it involves only a specially selected sequence of moving averages. The results are also extended for random fields (X k: k, ℓ = 1, 2, …).  相似文献   

16.
We obtain new embedding theorems for Lorentz spaces of vector-valued martingales, thus generalizing the classical martingale inequalities. In contrast to earlier methods, we use martingale transformations defined by sequences of operators and identify the operator S (p)(f) for a martingale f ranging in a Banach space X with the maximal operator for some ℓ p (X)-valued martingale transform. The obtained inequalities are closely related to geometric properties of the Banach space in question.  相似文献   

17.
We consider particular (k, ℓ)-hook probability measures on the space of the infinite standard Young tableaux, and calculate the probability that the entry at the (1, 2) cell is odd. As n goes to infinity, this, approximately, is the corresponding probability on tableaux of size n in the (k, ℓ) hook. In few cases of small k and ℓ we find exact formulas for the corresponding numbers of such standard tableaux.  相似文献   

18.
The Capacitated Facility Location Problem (CFLP) is to locate a set of facilities with capacity constraints, to satisfy at the minimum cost the order-demands of a set of clients. A multi-source version of the problem is considered in which each client can be served by more than one facility. In this paper we present a reformulation of the CFLP based on Mixed Dicut Inequalities, a family of minimum knapsack inequalities of a mixed type, containing both binary and continuous (flow) variables. By aggregating flow variables, any Mixed Dicut Inequality turns into a binary minimum knapsack inequality with a single continuous variable. We will refer to the convex hull of the feasible solutions of this minimum knapsack problem as the Mixed Dicut polytope. We observe that the Mixed Dicut polytope is a rich source of valid inequalities for the CFLP: basic families of valid CFLP inequalities, like Variable Upper Bounds, Cover, Flow Cover and Effective Capacity Inequalities, are valid for the Mixed Dicut polytope. Furthermore we observe that new families of valid inequalities for the CFLP can be derived by the lifting procedures studied for the minimum knapsack problem with a single continuous variable. To deal with large-scale instances, we have developed a Branch-and-Cut-and-Price algorithm, where the separation algorithm consists of the complete enumeration of the facets of the Mixed Dicut polytope for a set of candidate Mixed Dicut Inequalities. We observe that our procedure returns inequalities that dominate most of the known classes of inequalities presented in the literature. We report on computational experience with instances up to 1000 facilities and 1000 clients to validate the approach.  相似文献   

19.
This paper addresses a multi-stage stochastic integer programming formulation of the uncapacitated lot-sizing problem under uncertainty. We show that the classical (ℓ,S) inequalities for the deterministic lot-sizing polytope are also valid for the stochastic lot-sizing polytope. We then extend the (ℓ,S) inequalities to a general class of valid inequalities, called the inequalities, and we establish necessary and sufficient conditions which guarantee that the inequalities are facet-defining. A separation heuristic for inequalities is developed and incorporated into a branch-and-cut algorithm. A computational study verifies the usefulness of the inequalities as cuts. This research has been supported in part by the National Science Foundation under Award number DMII-0121495.  相似文献   

20.
In this paper we consider an optimization version of the multicommodity flow problem which is known as the maximum concurrent flow problem. We show that an approximate solution to this problem can be computed deterministically using O(k(ε −2 + logk) logn) 1-commodity minimum-cost flow computations, wherek is the number of commodities,n is the number of nodes, andε is the desired precision. We obtain this bound by proving that in the randomized algorithm developed by Leighton et al. (1995) the random selection of commodities can be replaced by the deterministic round-robin without increasing the total running time. Our bound significantly improves the previously known deterministic upper bounds and matches the best known randomized upper bound for the approximation concurrent flow problem. A preliminary version of this paper appeared inProceedings of the 6th ACM-SIAM Symposium on Discrete Algorithms, San Francisco CA, 1995, pp. 486–492.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号