首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Based on a 7-parameter shell model, a numerical algorithm has been developed for solving the geometrically nonlinear problem of a multilayer composite shell subjected to a follower pressure and undergoing large displacements and rotations. As unknowns, six displacements of the outer surfaces and addition ally the transverse displacement of midsurface of the shell are chosen. This allows one to use the Green–Lagrange strain tensor, introduced earlier by the authors, which exactly represents arbitrarily large rigid-body displacements of the shell in curvilinear coordinates of a reference surface. A geometrically exact solid shell element is formulated, which permits one to solve the nonlinear deformation problem for thin-walled composite structures subjected to a follower pressure by using a very small number of load steps.  相似文献   

2.
Based on mixed finite-element approximations, a numerical algorithm is developed for solving a geometrically nonlinear contact problem for a prestressed multilayered Timoshenko-type shell undergoing arbitrarily large displacements and rotations. As unknowns, six displacements of faces of the shell are taken, which allows one to use principally new relationships for components of the Green–Lagrange strain tensor in curvilinear orthogonal coordinates, exactly representing arbitrarily large displacements of the shell as a rigid body. As an example, a tire interacting with a rigid foundation is considered.  相似文献   

3.
The Hu-Washizu functional is constructed for analyzing prestressed multilayer anisotropic Timoshenko-type shells. As unknown functions, six displacements and eleven strains of the faces of the shells are chosen. Based on mixed finite-element approximations, a numerical algorithm is developed for solving linear static problems of prestressed multilayer composite shells. The results of solving the well-known test problem on a cylindrical shell subjected to two opposite point forces and the problem on local loading of a toroidal multilayer rubber-cord shell are presented.  相似文献   

4.
Based on a 7-parameter shell model, a numerical algorithm is developed for solving the contact problem for a multilayered composite shell lying on a rigid convex foundation, which is subjected to a follower pressure and undergoes arbitrarily large rotations. A new geometrically exact solid shell element is formulated, which permits one to solve the nonlinear deformation problem for thin-walled composite structures under unilateral contact constraints by using a small number of load steps. The calculation of a homogeneous ring and an angle-ply toroidal shell interacting with plane and cylindrical foundations is considered.  相似文献   

5.
An algorithm is developed for the numerical solution of the contact problem of an elastic Timoshenko-type shell subjected to arbitrarily large displacements and rotations, using mixed finite-element approximations. It is essential that six displacements of the faces of the shell are chosen as the required functions. This enables one, first, to simplify the formulation of contact problems in the mechanics of thin-walled structures, since functions by means of which the conditions for the non-penetration of the bodies are formulated are chosen as the required functions and, second, to obtain relations for the components of the Green-Lagrange strain tensor in curvilinear, orthogonal coordinates which accurately represent arbitrarily large displacements of a shell as a rigid body.  相似文献   

6.
Based on a 7-parameter shell model, a numerical algorithm has been developed for solving a coupled problem of thermoelectroelasticity for a laminated piezoelectric shell subjected to a thermoelectromechanical loading. As unknowns, six tangential and transverse displacements of outer surfaces and the transverse displacement of shell midsurface are chosen. This choice provides a possibility of utilizing the complete 3D constitutive equations of thermopiezoelectricity. A geometrically exact 3D hybrid piezoelectric shell element is formulated by using nonconventional analytical integration. With the help of this finite element, solutions of coupled problems of thermoelectroelasticity for laminated plates and shells with segmented and distributed piezoelectric sensors and actuators are obtained.  相似文献   

7.
The discussion focuses on two numerical algorithms for solving the nonlinear static problems of multilayer composite shells of revolution, namely the algorithm based on the discrete orthogonalization method and the algorithm based on the finite element method with a local linear approximation in the meridian direction. The material of each layer of the shell is assumed to be linearly elastic and anisotropic (nonorthotropic). A feature of this approach is that the displacements of the face surfaces of the shell are chosen as unknown functions, i.e., the functions which allows us to formulate the kinematic boundary conditions on these surfaces. As an example, a cross-ply cylindrical shell subjected to uniform axisymmetric tension is considered. It is shown that the algorithms elaborated correctly describe the local distribution of the stress tensor over the shell thickness without an expensive software based on the 3D anisotropic theory of elasticity.Tambov State Technical University, Tambov, Russia. Translated from Mekhanika Kompozitnykh Materialov, Vol. 35, No. 3, pp. 347–358, May–June, 1999.  相似文献   

8.
Two algorithms for numerical solution of static problems for multilayer anisotropic shells of revolution are discussed. The first algorithm is based on a differential approach using the method of discrete orthogonalization, and the second one—on the finite element method with linear local approximation in the meridional direction. It is assumed that the layers of the shell are made of linearly elastic, anisotropic materials. As the unknown functions, six displacements of the shell are chosen, which often simplifies the definition of static problems for multilayer shells. The calculation of a cross-ply cylindrical shell stretched in the axial direction is considered. It is shown that taking account of the transverse compression, anisotropy, and geometrical nonlinearity is important for the given class of problems.Tambov State Technical University, Tambov, Russia. Translated from Mekhanika Kompozitnykh Materialov, Vol. 35, No. 4, pp. 435–446, May–June, 1999.  相似文献   

9.
Thin piezoelectric laminates are used for a wide range of technical applications. A four-node piezoelectric shell element is presented to analyse such structures effectively. In case of bending dominated problems incompatible approximation functions of the electrical and mechanical fields cause incorrect results. In order to overcome this problem the finite element formulation is based on a mixed variational principle implying six independent fields: displacements, electric potential, strains, electric field, mechanical stresses and dielectric displacements. This allows for an interpolation of the strains and the electric field in thickness direction independent of the bilinear interpolation functions. A piecewise quadratic approach for the shear strains in thickness direction and the corresponding electric field is proposed for arbitrarily layered shells. Regarding coupling of electrical and mechanical fields this yields to an appropriate balance of the approximation functions. Numerical examples show more precise results in contrast to standard elements with lowest order interpolation functions. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
A method for solving the Riemann-Hilbert boundary value problem with piecewise-constant coefficients is generalized /1/. It is shown that the following static problems of a composite elastic plane with three kinds of connection conditions allow of exact solutions: 1) the splicing line is weakened by a system of loaded slots and a transverse shear crack or the edges of one of the slots are partially contacting, or one of the slots is cleaved by a rigid insert; 2) the splicing line is reinforced by a system of thin rigid inclusions and there is one arbitrarily located delamination zone; 3) the elastic half-planes are contacting (with slip) on a certain section of their boundaries, and mixed boundary conditions in the displacements and stresses are given on the rest of the boundaries.

In the general case the Riemann-Hilbert boundary value problem for many functions reduces to the problem of a linear conjugation, and then to Fredholm integral Eqs./2/. Closed solutions are obtained in certain special cases /3–5/. For applications we mention the papers /6, 7/, where problems are considered concerning slits at the interface of two elastic media with two kinds of physical boundary conditions taken into account simultaneously.  相似文献   


11.
The problem of optimum thrust generation by means of a rigid profile performing small arbitrarily periodic motions in an inviscid incompressible fluid is studied. The motions considered have to generate a prescribed mean value of thrust and must be such that the contribution to this mean thrust by the suction at the leading edge does not exceed a certain given value. Furthermore, the motions are in general subjected to a maximum type constraint on their amplitude. For this infinite dimensional, nonconvex and nonsmooth optimization problem, a generalized Lagrange multiplier rule is derived. In case the constraint on the amplitude is omitted, the optimum motions are calculated analytically; for the general case a number of properties of the solutions are derived from the Lagrange multiplier rule.  相似文献   

12.
A frequency method is proposed for solving the problem of the vibrations of shells of revolution taking into account the energy dissipation under arbitrary force loading and on collision with a rigid obstacle. The Laplace transform is taken of the equation of the vibrations of a shell of revolution with non-zero initial conditions. For the inhomogeneous differential equation obtained, a variational method is used to solve the boundary-value problem, which consists of finding the Laplace-transformed boundary transverse and longitudinal forces and bending moments as functions of the boundary displacements. The equations of equilibrium of nodes, i.e. the corresponding equations of the finite-element method, are then compared, using results obtained earlier [1–4]. Amplitude-phase-frequency characteristics (APFCs) for the shell cross-sections selected are plotted. An inverse Laplace transformation is carried out using the clear relationship between the extreme points of the APFCs and the coefficients of the corresponding terms of the series in an expansion vibration modes [3]. In view of the fact that the proposed approach is approximate, numerical testing is used.  相似文献   

13.
Katrin Schulz  Sven Klinkel  Werner Wagner 《PAMM》2008,8(1):10337-10338
A geometrically nonlinear finite element formulation to analyze piezoelectric shell structures is presented. The formulation is based on the mixed field variational functional of Hu–Washizu. Within this variational principle the independent fields are displacements, electric potential, strains, electric field, stresses and dielectric displacements. The mixed formulation allows an interpolation of the strains and the electric field through the shell thickness, which is an essential advantage when using a three dimensional material law. It is remarked that no simplification regarding the constitutive relation is assumed. The normal zero stress condition and the normal zero dielectric displacement condition are enforced by the independent resultant stress and resultant dielectric displacement fields. The shell structure is modeled by a reference surface with a four node element. Each node possesses six mechanical degrees of freedom, three displacements and three rotations, and one electrical degree of freedom, which is the difference of the electric potential through the shell thickness. The developed mixed hybrid shell element fulfills the in–plane, bending and shear patch tests, which have been adopted for coupled field problems. A numerical investigation of a smart antenna demonstrates the applicability of the piezoelectric shell element under the consideration of geometrical nonlinearity. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Boltzmann's superposition principle is extended to large strains in the case where the principal strain axes do not change with time and are identically directed at all points of the body. The relations obtained are confirmed by experiment. On the basis of these relations the author examines the problem of large strains of a heated viscoelastic cylinder subjected to the action of time-dependent internal and external pressures, and the analogous problem in the presence of a reinforcing cylindrical shell. The solution of the solving nonlinear integral equation of the latter problem is unique and is obtained in the form of a convergent infinite series.Mekhanika Polimerov, Vol. 2, No. 4, pp. 508–518, 1966  相似文献   

15.
A boundary element method for potential flow problem coupled with the dynamics of rigid body was developed to determine numerically the resultant force and moment of force acting on an arbitrarily three-dimensional solid body and its motion in a current of an infinite fluid. An accurate integration method for singular integrands occurring in the boundary integral equations, a computational method for the tangential gradient of a velocity potential on a surface, and a method to properly treat the singularities appearing in the system of the dynamic equations of a rigid body, were proposed to complete the numerical solution of the problem. Several numerical examples were given to show the validity of the method.  相似文献   

16.
The deformation, stability and vibration equations for anisotropic cylindrical shells stiffened with individual longitudinal and circumferential ribs are derived without introducing the hypothesis of nondeformable normals. The more general assumption adopted for layered materials (for example, glass-reinforced plastics) of a linear variation of the displacements over the thickness of the shell and the height of the ribs is used; in this case for the points of contact of the shell and the ribs after deformation the common normals form broken lines. The solution of the problem of the stability of a cylindrical shell stiffened with circumferential ribs is examined. For a shell with different, arbitrarily located ribs the problem is reduced to a homogeneous algebraic system of equations equal in number to three times the number of ribs.Moscow. Translated from Mekhanika Polimerov, No. 4, pp. 647–654, July–August, 1974.  相似文献   

17.
Sandro Zwecker  Sven Klinkel 《PAMM》2011,11(1):499-500
To analyse the behaviour of thin structures of dielectric elastomer (DE) material a solid shell finite element is presented. The main characteristics of DEs are a non-linear hyper elastic behaviour, the quasi-incompressibility, and the ability to transform electric energy into mechanical work. Applying a voltage to thin DE structures may produce large elongation strains of 120-380%. These large strains, the efficient electro-mechanical coupling, and the light weight make DEs very attractive for the usage in actuators. Thus, there is a need for detailed research. With respect to the electro-mechanical coupling a constitutive model is presented. An electric stress tensor and a total stress tensor are introduced by considering the electrical body force and couple in the balance of linear momentum and angular momentum, respectively. The governing equations are derived and embedded in the solid shell formulation. The element formulation is based on a Hu-Washizu mixed variational principle using six independent fields: displacements, electric potential, strains, electric field, mechanical stresses, and dielectric displacements. It allows large deformations and accounts for physical nonlinearities to capture two of the main characteristics of DEs. The shell element could be applied for the modelling of arbitrary curved thin structures. The ability of the present element formulation is demonstrated in several examples. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
A finite-element formulation of the solution of problems of the stability of non-circular cylindrical shells taking into account their bending moments and the non-linearity of their precritical stress-strain state in proposed. Explicit expressions for the displacements of the elements of non-circular cylindrical shells as rigid bodies are derived by integration of the equations obtained by equating the components of the linear strains to zero. These expressions are used to construct shape functions of an effective quadrilateral finite element of the natural curvature. An effective algorithm is developed for investigating the non-linear deformation and stability of the shells. The stability of a cylindrical shell of elliptical cross-section under transverse bending is investigated. The influence of the ellipticity and non-linearity of the deformation on the shell's stability is determined. The results of the analysis are compared with experimental data.  相似文献   

19.
压电梁的多项式解(Ⅰ)——若干精确解   总被引:4,自引:2,他引:2  
从正交各向异性压电介质平面问题,对于材料3个特征根互不相等情况下,以3个拟调和函数表达位移、电势、应力和电位移的通解出发,利用调和多项式的显式表达式,结合试凑法,给出了平面压电梁的一系列精确解,包括刚体平动、刚体转动、均匀电势、均匀拉伸、均匀电位移、纯剪切、纯弯曲和两端自由压电梁上下表面作用常电势情况下的精确解.  相似文献   

20.
基于曲率插值的大变形梁单元   总被引:1,自引:1,他引:0  
线性梁单元的形函数在单元大转动时会引起虚假应变,不适用于几何非线性分析.传统的几何非线性梁单元由于位移插值和转角插值的相干性,常常引起剪切闭锁等问题.该文 提出了一种平面大变形梁单元,通过单元域内的曲率插值以及曲率与节点位移之间的函数关系,将单元节点力和节点位移表示为节点曲率的函数.由于曲率插值本质上是对梁的应变进行插值,保证了单元任意刚体运动不会产生虚假的节点力;且将梁的截面形心位移表示为曲率的函数,避免了传统单元中的剪切闭锁问题.因而所提方法特别适用于梁的几何非线性分析.数值算例说明了所提方法的正确性和有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号