首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cis-dioxo-molybdenum(VI) complexes, [MoO2(L(H))2]2- (1b), [MoO2(L(S))(2)]2- (2b), and [MoO2(L(O))2]2- (3b) (L(H) = cyclohexene-1,2-dithiolate, L(S) = 2,3-dihydro-2H-thiopyran-4,5-dithiolate, and L(O) = 2,3-dihydro-2H-pyran-4,5-dithiolate), with new aliphatic dithiolene ligands were prepared and investigated by infrared (IR) and UV-vis spectroscopic and electrochemical methods. The mono-oxo-molybdenum(IV) complexes, [MoO(L(H))2]2- (1a), [MoO(L(S))2]2- (2a), and [MoO(L(O))2]2- (3a), were further characterized by X-ray crystal structural determinations. The IR and resonance Raman spectroscopic studies suggested that these cis-dioxo molybdenum(VI) complexes (1b-3b) had weaker Mo=O bonds than the common Mo(VI)O2 complexes. Complexes 1b-3b also exhibited strong absorption bands in the visible regions assigned as charge-transfer bands from the dithiolene ligands to the cis-MoO2 cores. Because the oxygen atoms of the cis-Mo(VI)O2 cores are relatively nucleophilic, these complexes were unstable in protic solvents and protonation might occur to produce Mo(VI)O(OH), as observed with the oxidized state of arsenite oxidase.  相似文献   

2.
Numerous Mo and W tris(dithiolene) complexes in varying redox states have been prepared and representative examples characterized crystallographically: [M(S(2)C(2)R(2))(3)](z) [M = Mo, R = Ph, z = 0 (1) or 1- (2); M = W, R = Ph, z = 0 (4) or 1- (5); R = CN, z = 2-, M = Mo (3) or W (6)]. Changes in dithiolene C-S and C-C bond lengths for 1 versus 2 and 4 versus 5 are indicative of ligand reduction. Trigonal twist angles (Θ) and dithiolene fold angles (α) increase and decrease, respectively, for 2 versus 1, 5 versus 4. Cyclic voltammetry reveals generally two reversible couples corresponding to 0/1- and 1-/2- reductions. The electronic structures of monoanionic molybdenum tris(dithiolene) complexes have been analyzed by multifrequency (S-, X-, Q-band) EPR spectroscopy. Spin-Hamiltonian parameters afforded by spectral simulation for each complex demonstrate the existence of two distinctive electronic structure types. The first is [Mo(IV)((A)L(3)(5-?))](1-) ((A)L = olefinic dithiolene, type A), which has the unpaired electron restricted to the tris(dithiolene) unit and is characterized by isotropic g-values and small molybdenum superhyperfine coupling. The second is formulated as [Mo(V)((B)L(3)(6-))](1-) ((B)L = aromatic dithiolene, type B) with spectra distinguished by a prominent g-anisotropy and hyperfine coupling consistent with the (d(z(2)))(1) paramagnet. The electronic structure disparity is also manifested in their electronic absorption spectra. The compound [W(bdt)(3)](1-) exhibits spin-Hamiltonian parameters similar to those of [Mo(bdt)(3)](1-) and thus is formulated as [W(V)((B)L(3)(6-))](1-). The EPR spectra of [W((A)L(3))](1-) display spin-Hamiltonian parameters that suggest their electronic structure is best represented by two resonance forms {[W(IV)((A)L(3)(5-?))](1-) ? [W(V)((A)L(3)(6-))](1-)}. The contrast with the corresponding [Mo(IV)((A)L(3)(5-?))](1-) complexes highlights tungsten's preference for higher oxidation states.  相似文献   

3.
Mono(dithiolene)sulfidomolybdenum(IV) complexes, [MoS(S4)(bdt)](2-) (2) and [MoS(S4)(bdtCl2)](2-) (3) (1,2-benzenedithiolate = bdt, 3,6-dichloro-1,2-benzenedithiolate = bdtCl2), were prepared by the substitution reaction of a tetrasulfido ligand in known [MoS(S4)2](2-) (1) with the corresponding dithiol. Complexes 2 and 3 were irreversibly oxidized to give bis(mu-sulfido) dimolybdenum(V) species, {[MoS(bdt)]2(mu-S)2}(2-) (4) and {[MoS(bdtCl2)]2(mu-S)2}(2-) (5), in aerobic acetonitrile. Mono(dithiolene)oxomolybdenum(IV) complexes, [MoO(S4)(bdt)](2-) (7) and [MoO(S4)(bdtCl2)](2-) (8), that are oxo derivatives of 2 and 3 were also synthesized from a known [MoO(S4)2](2-) (6) of an oxo derivative of 1 and the corresponding dithiol. Further, the electrophilic addition of dimethyl acetylenedicarboxylate to 7 gave [MoO(bdt)(S2C2(COOMe)2)](2-) (9), and ligand substitution of the tetrasulfido group of 7 with bdt and bdtCl2 yielded [MoO(bdt)2](2-) ( 10) and [MoO(bdt)(bdtCl2)](2-) (11), respectively. New sulfido/oxo molybdenum complexes were characterized by (1)H NMR, IR, ESI-MS, Raman, and UV-vis spectroscopies; cyclic voltammetry; and elemental analysis, and crystal structures of 2, 3, 5, 7, and 8 were determined by X-ray analysis.  相似文献   

4.
Jiang J  Holm RH 《Inorganic chemistry》2004,43(4):1302-1310
The active sites of tungstoenzymes have the formulations W(IV,V)L(S(2)pd)(2) and W(VI)LL'(S(2)pd)(2), in which two pyranopterindithiolene cofactor ligands (S(2)pd) are chelated to a tungsten atom. Ligands L and/or L' are not fully defined in any wild-type enzyme. The feasibility of various coordination fragments (functional groups) in potential bis(dithiolene)tungsten site analogues has been examined in previous work by exploratory synthesis. This investigation expands the range of accessible functional groups. The synthetic scheme originates with [W(CO)(2)(S(2)C(2)Me(2))(2)], whose carbonyl groups are labile to substitution. Complexes [W(IV,VI)LL'(S(2)C(2)Me(2))(2)](1-) are described in terms of their functional groups W(IV,VI)LL'. Reaction of the dicarbonyl with formate in acetonitrile/THF affords W(IV)(CO)(eta(1)-HCO(2)) (4) and in Me(2)SO W(VI)O(eta(1)-HCO(2)) (7) by an oxo transfer reaction. Carboxylates yield six-coordinate W(IV)(eta(2)-O(2)CR) (1-3, R = Ph, Me, Bu(t)) with C(2)(v) symmetry. Reaction of 3 (R = Bu(t)) with Me(3)SiSR (R = C(6)H(2)-2,4,6-Pr(i)(3)) gives W(IV)(SR) (5), which undergoes oxo and sulfido atom transfer to form W(VI)O(SR) (8) and W(VI)S(SR) (9), respectively. Attempts to prepare corresponding selenolate complexes, pertinent to the active site of formate dehydrogenase, were unsuccessful, including reactions of W(VI)OCl (10) with RSe(-). Structure proofs of 2-10 were obtained by X-ray structure determinations. Some 26 functional group types in bis(dithiolene)W(IV,V,VI) molecules have now been achieved by synthesis. It remains to be seen which are incorporated in an enzyme site. A number of them (e.g., 5) are directly analogous to molybdoenzyme sites, and may possess corresponding reactivity with biological substrates, as do W(IV)(OR)/W(VI)O(OR) (prepared earlier) in the reduction of N- and S-oxides by atom transfer.  相似文献   

5.
The X-ray absorption spectra at the molybdenum and selenium K-edges and the tungsten L2,3-edges are acquired for a set of 14 Mo(IV) and W(IV,VI) bis(dithiolene) complexes related to the active sites of molybdo- and tungstoenzymes. The set includes square pyramidal [MoIVL(S2C2Me2)2]- (L = O2-, R3SiO-, RO-, RS-, RSe-) and [WIV(OR)(S2C2Me2)2]-, distorted trigonal prismatic [MoIV(CO)(SeR)(S2C2Me2)2]- and [WIV(CO)L(S2C2Me2)2]- (L = RS-, RSe-), and distorted octahedral [WVIO(OR)(S2C2Me2)2]-. The dithiolene simulates the pterin-dithiolene cofactor ligand, and L represents a protein ligand. Bond lengths are determined by EXAFS analysis using the GNXAS protocol. Normalized edge spectra, non-phase-shift-corrected Fourier transforms, and EXAFS data and fits are presented. Bond lengths determined by EXAFS and X-ray crystallography agree to < or = 0.02 A as do the M-Se distances determined by both metal and selenium EXAFS. The complexes [MoIV(QR)(S2C2Me2)2]- simulate protein ligation by the DMSO reductase family of enzymes, including DMSO reductase itself (Q = O), dissimilatory nitrate reductase (Q = S), and formate dehydrogenase (Q = Se). Edge shifts of these complexes correlate with the ligand electronegativities. Terminal ligand binding is clearly distinguished in the presence of four Mo-S(dithiolene) interactions. Similarly, five-coordinate [ML(S2C2Me2)2]- and six-coordinate [M(CO)L(S2C2Me2)2]- are distinguishable by edge and EXAFS spectra. This study expands a previous XAS investigation of bis(dithiolene)metal(IV,V,VI) complexes (Musgrave, K. B.; Donahue, J. P.; Lorber, C.; Holm, R. H.; Hedman, B.; Hodgson, K. O. J. Am. Chem. Soc. 1999, 121, 10297) by including a larger inventory of molecules with variant physiologically relevant terminal ligation. The previous and present XAS results should prove useful in characterizing and refining metric features and structures of enzyme sites.  相似文献   

6.
Sung KM  Holm RH 《Inorganic chemistry》2001,40(18):4518-4525
Structurally characterized tungstoenzymes contain mononuclear active sites in which tungsten is coordinated by two pterin-dithiolene ligands and one or two additional ligands that have not been identified. In this and prior investigations (Sung, K.-M.; Holm, R. H. Inorg. Chem. 2000, 39, 1275; J. Am. Chem. Soc. 2001, 123, 1931), stable coordination units of bis(dithiolene)tungsten(IV,V,VI) complexes potentially related to enzyme sites have been sought by exploratory synthesis. In this work, additional members of the sets [WL(S2C2Me2)2](2-,-) and [WLL'(S2C2Me2)2](2-,-) have been prepared and structurally characterized. Tungsten(IV) complexes obtained by substitution are carbonyl displacement products of [W(CO)2(S2C2Me2)2] and include those with the groups W(IV)S (4), W(IV)(O2CPh) (5), and W(IV)(2-AdQ)(CO) (Q = S (6), Se (7); Ad = adamantyl). Those obtained by oxidation reactions contain the groups W(V)O (9), W(V)(QPh)2 (Q = S (10), Se (11)), W(VI)S(OPh) (12), and W(VI)O2 (14). The latter two complexes were obtained from W(IV) precursors using sulfur and oxygen atom transfer reactions, respectively. Complexes 4 and 9 are square pyramidal; 6, 7, 10, and 11 are distorted trigonal prismatic with cis ligands LL'; and 12 and 14 are distorted octahedral. Complexes 4, 10, and 11 support three-membered electron transfer series. Attempts to oxidize 4 to the W(V)S complex results in the formation of binuclear [W2(mu2-S)2(S2C2Me2)4](2-) having distorted octahedral coordination. The 21 known functional groups WL and WLL' in mononuclear bis(dithiolene) complexes prepared in this and prior investigations are tabulated. Of those with physiological-type ligands, it remains to be seen which (if any) of these ligation modes are displayed by enzyme sites.  相似文献   

7.
Two series of thiol-bridged dimeric desoxo molybdenum(IV) and tungsten(IV) bis(dithiolene) complexes, [Et(4)N](2)[M(IV)(2)(SR)(2)(mnt)(4)] [M = Mo, R = (1) -Ph, (2) -CH(2)Ph, (3) -CH(2)CH(3), (4) -CH(2)CH(2)OH; M = W, R = (1a) -Ph, (2a) -CH(2)Ph, (3a) -CH(2)CH(3), (4a) -CH(2)CH(2)OH] and one monomeric desoxo complex, [Et(4)N](2)[WIV(SPh)(2)(mnt)(2)] (5a) are reported. These complexes are diamagnetic, and crystal structures of each of the complex (except 5a) exhibits a dimeric {M(IV)(2)(SR)(2)} core without any metal-metal bond where each metal atom possesses hexa coordination. The M-SR distance ranges from 2.437 to 2.484 Angstrom in molybdenum complexes and from 2.418 to 2.469 Angstrom in tungsten complexes. These complexes display Mo-S(R)-Mo angles ranging from 92.84 degrees to 96.20 degrees in the case of 1-4 and W-S(R)-W angles ranging from 91.20 degrees to 96.25 degrees in the case of 1a-4a. Interestingly, both the series of Mo(IV) and W(IV) dimeric complexes respond to an unprecedented interconversion between the dimer and the corresponding hexacoordinated monomer upon change of pH. This pH-dependent interconversion establishes the fact that even the pentacoordinated Mo(IV) and W(IV) bis(dithiolene) moieties are forced to dimerize; these can easily be reverted back to the corresponding monomeric complex, reflecting the utility of dithiolene ligand in stabilizing the Mo(IV)/W(IV) moiety in synthesized complexes similar to the active sites present in native proteins.  相似文献   

8.
The reaction of Mo2(SCH2CH2S)2Cp2 (1; Cp=eta-C5H5) with an excess of an alkyne in refluxing dichloromethane affords the bis(dithiolene) complexes Mo2(micro-SCR1=CR2S)2Cp2 (2a, R1=R2=CO2Me; 2b, R1=R2=Ph; 2c, R1=H, R2=CO2Me) whereas with 1 equiv of alkyne at room temperature the mixed dithiolene-dithiolate species Mo2(micro-SCR1=CR2S)(micro-SCH2CH2S)Cp2 (3a, R1=R2=CO2Me; 3b, R1=R2=Ph) are formed. The remaining dithiolate ligand in 3 can then be converted into a different dithiolene by reaction with a second alkyne. Applying this methodology, we have used bis(diphenylphosphino)acetylene to prepare the first examples of complexes containing phosphine-substituted dithiolene ligands: Mo2{micro-SC(CO2Me)=C(CO2Me)S}{micro-SC(PPh2)=C(PPh2)S}Cp2 (2g) and Mo2{micro-SC(PPh2)=C(PPh2)S}2Cp2 (2h). Tri- and tetrametallic complexes can then be assembled by coordination of these diphosphines to CpRuCl units by reaction with CpRu(PPh3)2Cl. Electrochemical studies of the Ru(II)/Ru(III) couple in Mo2{micro-SC(PPh2)=C(PPh2)S}2Cp2(RuClCp)2 (4b) reveals that the two separate ruthenium centers are oxidized electrochemically at different potentials, demonstrating communication between them through the dimolybdenum bis(dithiolene) core. Density functional theory calculations were carried out to explore the electronic structures of these species and to predict and assign their electronic spectra.  相似文献   

9.
Structural analogues of the reduced (Mo(IV)) sites of members of the DMSO reductase family of molybdoenzymes are sought. These sites usually contain two pterin-dithiolene cofactor ligands and one protein-based ligand. Reaction of [Mo(MeCN)3(CO)3] and [Ni(S2C2R2)2] affords the trigonal prismatic complexes [Mo(CO)2(S2C2R2)2] (R = Me (1), Ph (2)), which by carbonyl substitution serve as useful precursors to a variety of bis(dithiolene)molybdenum-(IV,V) complexes. Reaction of 1 with Et4NOH yields [MoO(S2C2Me2)2]2- (3), which is readily oxidized to [MoO(S2C2Me2)2]1- (4). The hindered arene oxide ligands ArO- afford the square pyramidal complexes [Mo(OAr)(S2C2R2)2]1- (5, 6). The ligands PhQ- affordthe trigonal prismatic monocarbonyls [Mo(CO)(QPh)(S2C2Me2)2]1- (Q = S (8), Se (12)) while the bulky ligand ArS- forms square pyramidal [Mo(SAr)(S2C2R2)2]- (9, 10). In contrast, reactions with ArSe- result in [Mo(CO)(SeAr)(S2C2R2)2]1-(14, 15), which have not been successfully decarbonylated. Other compounds prepared by substitution reactions of 1 and 2 include the bridged dimers [Mo2(mu-Q)2(S2C2Me2)4]2- (Q = S (7), Se (11)) and [Mo2(mu-SePh)2(S2C2Ph2)4]2- (13). The complexes 1, 3-5, 7-10, 12-14, [Mo(S2C2Me2)3] (16), and [Mo(S2C2Me2)3]1- (17) were characterized by X-ray structure determinations. Certain complexes approach the binding arrangements in at least one DMSO reductase (5/6) and its Ser/Cys mutant, and in dissimilatory nitrate reductases (9/10). This investigation provides the initial demonstration of the new types of bis(dithiolene)molybdenum(IV) complexes available through [Mo(CO)2(S2C2R2)2] precursors, some of which will be utilized in reactivity studies. (Ar = 2,6-diisopropylphenyl or 2,4,6-triisopropylphenyl.)  相似文献   

10.
Various preparations of the neutral radical [CpNi(dddt)] complex (dddt = 5,6-dihydro-1,4-dithiin-2,3-dithiolate) were investigated with CpNi sources, [Cp2Ni], [Cp2Ni](BF4), [CpNi(CO)]2, and [CpNi(cod)](BF4), and dithiolene transfer sources, O=C(dddt), the naked dithiolate (dddt(2-)), the monoanion of square-planar Ni dithiolene complex (NBu4)[Ni(dddt)2], and the neutral complex [Ni(dddt)2]. The reaction of [CpNi(cod)](BF4) with (NBu4)[Ni(dddt)2] gave the highest yield for the preparation of [CpNi(dddt)] (86%). [CpNi(ddds)] (ddds = 5,6-dihydro-1,4-dithiin-2,3-diselenolate), [CpNi(dsdt)] (dsdt = 5,6-dihydro-1,4-diselenin-2,3-dithiolate), [CpNi(bdt)] (bdt = 1,2-benzenedithiolate), and [CpNi(bds)] (bds = 1,2-benzenediselenolate) were synthesized by the reactions of [Cp2Ni] with the corresponding neutral Ni dithiolene complexes [Ni(ddds)2]2, [Ni(dsdt)2], [Ni(bdt)2], and [Ni(bds)2], respectively. The five, formally Ni(III), radical complexes oxidize and reduce reversibly. They exhibit, in the neutral state, a strong absorption in the NIR region, from 1000 nm in the dddt/ddds/dsdt series to 720 nm in the bdt/bds series with epsilon values between 2500 and 5000 M(-1) cm(-1). The molecular and solid state structures of the five complexes were determined by X-ray structure analyses. [CpNi(dddt)] and [CpNi(ddds)] are isostructural, while [CpNi(dsdt)] exhibits a closely related structure. Similarly, [CpNi(bdt)] and [CpNi(bds)] are also isostructural. Correlations between structural data and magnetic measurements show the presence of alternated spin chains in [CpNi(dddt)], [CpNi(ddds)], and [CpNi(dsdt)], while a remarkably strong antiferromagnetic interaction in [CpNi(bdt)] and [CpNi(bds)] is attributed to a Cp...Cp face-to-face sigma overlap, an original feature in organometallic radical complexes.  相似文献   

11.
Sulfur K-edge X-ray absorption spectroscopy (XAS) and density functional theory (DFT) calculations have been used to determine the electronic structures of a series of Mo tris(dithiolene) complexes, [Mo(mdt)3](z) (where mdt = 1,2-dimethylethene-1,2-dithiolate(2-) and z = 2-, 1-, 0), with near trigonal-prismatic geometries (D3h symmetry). These results show that the formally Mo(IV), Mo(V), and Mo(VI) complexes actually have a (dz(2))(2) configuration, that is, remain effectively Mo(IV) despite oxidation. Comparisons with the XAS data of another set of Mo tris(dithiolene) complexes, [Mo(tbbdt)3](z) (where tbbdt = 3,5-ditert-butylbenzene-1,2-dithiolate(2-) and z = 1-, 0), show that both neutral complexes, [Mo(mdt)3] and [Mo(tbbdt)3], have similar electronic structures while the monoanions do not. Calculations reveal that the "Bailar twist" present in the crystal structure of [Mo(tbbdt)3](1-) (D3 symmetry) but not [Mo(mdt)3](1-) (D3h symmetry) is controlled by electronic factors which arise from bonding differences between the mdt and tbbdt ligands. In the former, configuration interaction between the Mo d(z(2)) and a deeper energy, occupied ligand orbital, which occurs in D3 symmetry, destabilizes the Mo d(z(2)) to above another ligand orbital which is half-occupied in the D3h [Mo(mdt)3](1-) complex. This leads to a metal d(1) configuration with no ligand holes (i.e., d(1)[L3](0h)) for [Mo(tbbdt)3](1-) rather than the metal d(2) configuration with one ligand hole (i.e., d(2)[L3](1h)) for [Mo(mdt)3](1-). Thus, the Bailar twist observed in some metal tris(dithiolene) complexes is the result of configuration interaction between metal and ligand orbitals and can be probed experimentally by S K-edge XAS.  相似文献   

12.
Sung KM  Holm RH 《Inorganic chemistry》2000,39(6):1275-1281
Recent protein crystallographic results on tungsten enzymes and primary sequence relationships between certain molybdenum and tungsten enzymes provoke interest in the generalized bis(dithiolene) complexes [WIV(QR)(S2C2R'2)2]1- and [WVIO(QR)(S2C2R'2)2]1- (Q = O, S, Se) as minimal representations of enzyme sites. The existence and stability of W(IV) complexes have been explored by synthesis. Reaction of [W(CO)2(S2C2Me2)2] (1) with PhO- results in complete CO substitution to give [W(OPh)(S2C2Me2)2]1- (2). Reaction of 1 with PhQ- affords the monocarbonyls [W(CO)(QPh)(S2C2Me2)2]1- (Q = S (3), Se (5)). The use of sterically demanding 2,4,6-Pri3C6H2Q- also yields monocarbonyls, [W(CO)(QC6H2-2,4,6-Pri3)(S2C2Me2)2]1- (Q = S (4), Se (6)). The X-ray structures of square pyramidal 2 and trigonal prismatic 3-6 (with unidentate ligands cis) are described. The tendency to substitute one or both carbonyl ligands in 1 in the formation of [MIV(QAr)(S2C2Me2)2]1- and [MIV(CO)(QAr)(SeC2Me2)2]1- with M = Mo and W is related to the M-Q bond length and ligand steric demands. The results demonstrate a stronger binding of CO by W(IV) than Mo(IV), a behavior previously demonstrated by thermodynamic and kinetic features of zerovalent carbonyl complexes. Complexes 3-6 can be reversibly reduced to W(III) at approximately -1.5 V versus SCE. On the basis of the potential for 2(-2.07 V), monocarbonyl ligation stabilizes W(III) by approximately 500 mV. This work is part of a parallel investigation of the chemistry of bis(dithiolene)-molybdenum (Lim, B. S.; Donahue, J. P.; Holm, R. H. Inorg. Chem. 2000, 39, 263) and -tungsten complexes related to enzyme active sites.  相似文献   

13.
Jiang J  Holm RH 《Inorganic chemistry》2005,44(4):1068-1072
Kinetics of the oxygen atom transfer reactions [M(IV)(QC6H2-2,4,6-Pr(i)3)(S2C2Me2)2]1- + XO --> [M(VI)O(QC6H2-2,4,6-Pr(i)3)(S2C2Me2)2]1- + X in acetonitrile with substrates XO = NO3- and (CH2)4SO have been determined. The reactants are bis(dithiolene) complexes with M = Mo, W and sterically encumbered axial ligands with Q = O, S to stabilize mononuclear square pyramidal structures. The complex [MoIV(SC6H2-2,4,6-Pr(i)3)(S2C2Me2)2]1- is an analogue of the active site of dissimilatory nitrate reductase which in the reduced state contains a molybdenum atom bound by two pyranopterindithiolene ligands and a cysteinate residue. Nitrate reduction was studied with tungsten complexes because of unfavorable stability properties of the molybdenum complexes. Product nitrite was detected by a colorimetric method. All reactions with both substrates are second-order with associative transition states (deltaS approximately -20 eu). Variation of atoms M and Q, together with data from prior work, allows certain kinetics comparisons to be made. Among them, k2W/k2Mo = 25 for (CH2)4SO reduction (Q = S), an expression of the kinetic metal effect. Further, k2S/k2O = 28 and approximately 10(4) for nitrate and (CH2)4SO reduction, respectively, effects attributed to relatively more steric congestion in achieving the transition state with hindered phenolate vs thiolate ligands. The effect is more pronounced with the larger substrate. These results demonstrate the feasibility of tungsten-mediated nitrate reduction by direct atom transfer using molecules with both axial thiolate and phenolate ligands. Complexes of the type [M(IV)(OR)(S2C2Me2)2] are capable of reducing biological N-oxide, S-oxide, and nitrate substrates and thus constitute functional analogue reaction systems of enzymic transformations.  相似文献   

14.
The active sites of the xanthine oxidase and sulfite oxidase enzyme families contain one pterin-dithiolene cofactor ligand bound to a molybdenum atom. Consequently, monodithiolene molybdenum complexes have been sought by exploratory synthesis for structural and reactivity studies. Reaction of [MoO(S(2)C(2)Me(2))(2)](1-) or [MoO(bdt)(2)](1-) with PhSeCl results in removal of one dithiolate ligand and formation of [MoOCl(2)(S(2)C(2)Me(2))](1-) (1) or [MoOCl(2)(bdt)](1-) (2), which undergoes ligand substitution reactions to form other monodithiolene complexes [MoO(2-AdS)(2)(S(2)C(2)Me(2))](1-) (3), [MoO(SR)(2)(bdt)](1-) (R = 2-Ad (4), 2,4,6-Pr(i)(3)C(6)H(2) (5)), and [MoOCl(SC(6)H(2)-2,4,6-Pr(i)(3))(bdt)](1-) (6) (Ad = 2-adamantyl, bdt = benzene-1,2-dithiolate). These complexes have square pyramidal structures with apical oxo ligands, exhibit rhombic EPR spectra, and 3-5 are electrochemically reducible to Mo(IV)O species. Complexes 1-6 constitute the first examples of five-coordinate monodithiolene Mo(V)O complexes; 6 approaches the proposed structure of the high-pH form of sulfite oxidase. Treatment of [MoO(2)(OSiPh(3))(2)] with Li(2)(bdt) in THF affords [MoO(2)(OSiPh(3))(bdt)](1-) (8). Reaction of 8 with 2,4,6-Pr(i)(3)C(6)H(2)SH in acetonitrile gives [MoO(2)(SC(6)H(2)-2,4,6-Pr(i)(3))(bdt)](1-) (9, 55%). Complexes 8 and 9 are square pyramidal with apical and basal oxo ligands. With one dithiolene and one thiolate ligand of a square pyramidal Mo(VI)O(2)S(3) coordination unit, 9 closely resembles the oxidized sites in sulfite oxidase and assimilatory nitrate reductase as deduced from crystallography (sulfite oxidase) and Mo EXAFS. The complex is the first structural analogue of the active sites in fully oxidized members of the sulfite oxidase family. This work provides a starting point for the development of both structural and reactivity analogues of members of this family.  相似文献   

15.
Aqueous solution studies regarding the identification and characterization of complexes formed by the VIVO ion and 11 3-hydroxy-4-pyridinone derivatives have been performed using EPR and UV/vis spectroscopic techniques. For the three ligands (HL) adequately soluble in water (1-methyl-3-hydroxy-4-pyridinone, 1-methyl-2-ethyl-3-hydroxy-4-pyridinone, and 1,2-diethyl-3-hydroxy-4-pyridinone), potentiometric titrations were performed; the results are consistent with the formation of [V(IV)OL]+, [V(IV)OL2], [V(IV)OL2H(-1)]-, [(V(IV)O)2L2H(-2)], and [V(IV)L3]+ species. Bis chelated complexes are characterized by a cis-trans isomerism, the trans isomer being strongly favored with respect to the cis arrangement. Tris chelated non-oxo V(IV) species were prepared in CH3COOH; their spectroscopic features point to a d(z2) ground state and a geometry intermediate between an octahedron and a trigonal prism, related to the steric requirements of the substituent on the carbon atom in position 2 of the pyridinone ring. Four new solid derivatives, [V(IV)O(1,2-diethyl-3-hydroxy-4-pyridinonato)2], [V(IV)O(1-(p-tolyl)-2-ethyl-3-hydroxy-4-pyridinonato)2], [V(IV)O(1-(p-(n-butyl)phenyl)-2-ethyl-3-hydroxy-4-pyridinonato)2], and [V(IV)O(1-(p-(n-hexyl)phenyl)-2-ethyl-3-hydroxy-4-pyridinonato)2], were isolated and characterized; they exhibited a five-coordinate geometry close to square-pyramid. A criterion for establishing the degree of distortion toward the trigonal-bipyramid on the basis of the electronic absorption spectra is provided. Relationships between the pKa of the -OH group in position 3 of the ring and (i) log K of mono and bis chelated complexes, (ii) pK of the water molecule in cis-[V(IV)OL2(H2O)], (iii) log K of tris chelated species [V(IV)L3]+, and (iv) 51V hyperfine coupling constant (Az) have been established and discussed for a number of pyrone, pyridinone, and catechol ligands. The results are rationalized by assuming for pyridinones an electronic structure intermediate between that of pyrones and catechols. The relationships are valuable to the understanding of the behavior of VIVO species in aqueous solution.  相似文献   

16.
Vanadium(V) complexes of the tridentate bis(phenolate)pyridine ligand H(2)BPP (H(2)BPP = 2,6-(HOC(6)H(2)-2,4-(t)Bu(2))(2)NC(5)H(3)) and the bis(phenolate)amine ligand H(2)BPA (H(2)BPA = N,N-bis(2-hydroxy-4,5-dimethylbenzyl)propylamine) have been synthesized and characterized. The ability of the complexes to mediate the oxidative C-C bond cleavage of pinacol was tested. Reaction of the complex (BPP)V(V)(O)(O(i)Pr) (4) with pinacol afforded the monomeric vanadium(IV) product (BPP)V(IV)(O)(HO(i)Pr) (6) and acetone. Vanadium(IV) complex 6 was oxidized rapidly by air at room temperature in the presence of NEt(3), yielding the vanadium(V) cis-dioxo complex [(BPP)V(V)(O)(2)]HNEt(3). Complex (BPA)V(V)(O)(O(i)Pr) (5) reacted with pinacol at room temperature, to afford acetone and the vanadium(IV) dimer [(BPA)V(IV)(O)(HO(i)Pr)](2). Complexes 4 and 5 were evaluated as catalysts for the aerobic oxidation of 4-methoxybenzyl alcohol and arylglycerol β-aryl ether lignin model compounds. Although both 4 and 5 catalyzed the aerobic oxidation of 4-methoxybenzyl alcohol, complex 4 was found to be a more active and robust catalyst for oxidation of the lignin model compounds. The catalytic activities and selectivities of the bis(phenolate) complexes are compared to previously reported catalysts.  相似文献   

17.
Electron paramagnetic resonance spectra of homoleptic and mixed-ligand molybdenum tris(dithiolene) complex anions [Mo(tfd)(m)(bdt)(n)](-) (n + m = 3; bdt = S(2)C(6)H(4); tfd = S(2)C(2)(CF(3))(2)) reveal that the spin density has mixed metal-ligand character with more ligand-based spin for [Mo(tfd)(3)](-) and a higher degree of metal-based spin for [Mo(bdt)(3)](-): the magnitude of the isotropic (95,97)Mo hyperfine interaction increases continuously, by a factor of 2.5, on going from the former to the latter. The mixed complexes fall in between, and the metal character of the spin increases with the bdt content. The experiments were corroborated by density functional theory computations, which reproduce this steady increase in metal-based character.  相似文献   

18.
A series of dithiolene complexes of the general type [Mo(IV)(QR')(S(2)C(2)Me(2))(2)](1)(-) has been prepared and structurally characterized as possible structural and reactivity analogues of reduced sites of the enzymes DMSOR and TMAOR (QR' = PhO(-), 2-AdO(-), Pr(i)()O(-)), dissimilatory nitrate reductase (QR' = 2-AdS(-)), and formate dehydrogenase (QR' = 2-AdSe(-)). The complexes are square pyramidal with the molybdenum atom positioned 0.74-0.80 A above the S(4) mean plane toward axial ligand QR'. In part on the basis of a recent clarification of the active site of oxidized Rhodobacter sphaeroides DMSOR (Li, H.-K.; Temple, C.; Rajagopalan, K. V.; Schindelin, H. J. Am. Chem. Soc. 2000, 122, 7673), we have adopted the minimal reaction paradigm Mo(IV) + XO right arrow over left arrow Mo(VI)O + X involving desoxo Mo(IV), monooxo Mo(VI), and substrate/product XO/X for direct oxygen atom transfer of DMSOR and TMAOR enzymes. The [Mo(OR')(S(2)C(2)Me(2))(2)](1)(-) species carry dithiolene and anionic oxygen ligands intended to simulate cofactor ligand and serinate binding in DMSOR and TMAOR catalytic sites. In systems with N-oxide and S-oxide substrates, the observed overall reaction sequence is [Mo(IV)(OR')(S(2)C(2)Me(2))(2)](1)(-) + XO --> [Mo(VI)O(OR')(S(2)C(2)Me(2))(2)](1)(-) --> [Mo(V)O(S(2)C(2)Me(2))(2)](1)(-). Direct oxo transfer in the first step has been proven by isotope labeling. The reactivity of [Mo(OPh)(S(2)C(2)Me(2))(2)](1)(-) (1) has been the most extensively studied. In second-order reactions, 1 reduces DMSO and (CH(2))(4)SO (k(2) approximately 10(-)(6), 10(-)(4) M(-)(1) s(-)(1); DeltaS(double dagger) = -36, -39 eu) and Me(3)NO (k(2) = 200 M(-)(1) s(-)(1); DeltaS(double dagger) = -21 eu) in acetonitrile at 298 K. Activation entropies indicate an associative transition state, which from relative rates and substrate properties is inferred to be concerted with X-O bond weakening and Mo-O bond making. The Mo(VI)O product in the first step, such as [Mo(VI)O(OR')(S(2)C(2)Me(2))(2)](1)(-), is an intermediate in the overall reaction sequence, inasmuch as it is too unstable to isolate and decays by an internal redox process to a Mo(V)O product, liberating an equimolar quantity of phenol. This research affords the first analogue reaction systems of biological N-oxide and S-oxide substrates that are based on desoxo Mo(IV) complexes with biologically relevant coordination. Oxo-transfer reactions in analogue systems are substantially slower than enzyme systems based on a k(cat)/K(M) criterion. An interpretation of this behavior requires more information on the rate-limiting step(s) in enzyme catalytic cycles. (2-Ad = 2-adamantyl, DMSOR = dimethyl sulfoxide reductase, TMAOR = trimethylamine N-oxide reductase)  相似文献   

19.
Selenidobis(dithiolene)molybdenum(IV) and -tungsten(IV) complexes were synthesized and characterized by several methods including X-ray crystallographic analysis. The five-coordinate M (V)Se species were accessed by one-electron oxidation of the M (IV)Se complexes. M (VI)Se complexes were suggested to be formed as an intermediate in oxygen atom transfer from Me 3NO to the M (IV)Se centers.  相似文献   

20.
The monomer molybdenum(VI) complex [MoO(2)(napoxlhH(2))].2H(2)O (1) has been synthesized from the reaction of MoO(2)(acac)(2) with bis(2-hydroxy-1-naphthaldehyde)oxaloyldihydrazone (napoxlhH(4)) in 1:1 molar ratio in ethanol under reflux. This complex on reaction with pyridine/3-picoline/4-picoline yielded the dimer molybdenum(VI) complexes [Mo(2)O(4)(napoxlhH(2))(2)(A)(2)].2H(2)O (A=py (2), 3-pic (3), 4-pic (4)), whereas reaction with isonicotinoylhydrazine (inhH(3)) and salicyloylhydrazine (sylshH(3)) lead to the reduction of the metal centre yielding monomeric molybdenum(V) complexes [Mo(napoxlhH(2))(hzid)].2H(2)O (where hzidH(3)=inhH(3) (5) and sylshH(3) (6)). The complexes have been characterized by elemental analyses, molecular weight determinations, molar conductance data, magnetic moment data, electronic, IR, ESR and (1)H NMR spectroscopic studies. The complexes (5) and (6) are paramagnetic to the extent of one unpaired electron. The electronic spectra of the complexes are dominated by strong charge transfer bands. In all of the complexes, the principal dihydrazone ligand has been suggested to coordinate to the metal centres in the anti-cis-configuration. The complexes (1), (5) and (6) are suggested to have six-coordinate octahedral stereochemistry around molybdenum(VI) and molybdenum(V) metal centres, respectively, while the complexes (2)-(4) are suggested to have eight coordinate dodecahedral stereochemistry around molybdenum(VI) metal centre.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号