首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Air bubbles have been formed using partially hydrophobic silica nanoparticles as the stabilizer. The particles were of primary particle size 20 nm, chemically treated to different degrees with dichlorodimethylsilane to render them partially hydrophobic. Above a certain bubble size range (typically 80-microm diameter), the bubbles seemed to be almost indefinitely stable, while for any size above 20 microm their stability against disproportionation is far better than bubbles stabilized by any protein film investigated in previous studies. A possible theoretical justification for this observation is presented. Bubbles could be formed by shaking water with the particles, but a much higher volume fraction of bubbles was obtained by pressurizing the aqueous phase to 5 atm overnight followed by suddenly releasing the pressure to nucleate bubbles within the silica dispersion. Sonicating the silica dispersion before nucleation also gave more bubbles, which were also found to be more stable. There appeared to be an optimum degree of surface hydrophobicity that gave maximum foamability and foam stability, where around 20-33% of the silanol groups on the silica surface had been converted to dimethylsilane groups. However, a sharp increase in stability occurred when between 1.8 and 2 mol dm(-3) NaCl was also included in the aqueous phase. The change in stability due to inclusion of salt can be rationalized in terms of changes occurring in the value of the particle contact angle. The effects of increasing sonication and an optimum surface chemical treatment can be explained by the need to make the particles sufficiently hydrophobic so that they adsorb strongly enough, while at the same time minimizing their tendency to aggregate in the bulk aqueous phase, which hinders their adsorption. Furthermore, confocal laser scanning microscopy of the bubble dispersions suggests that a large volume fraction of stable bubbles is only formed when the particles adsorbed to the bubbles are also part of a spanning silica particle network in the bulk aqueous solution, forming a weak gel with a finite yield stress.  相似文献   

2.
We investigate the onset of cavitation in a metastable fluid confined to nanoscale pores with nonwetting defects present. Using grand canonical and gauge cell mesocanonical Monte Carlo simulations, we study the degree of metastability (relative vapor pressure), at which the critical bubble forms in a spherical pore with a circular nonwetting defect. It is shown that an increase of the defect size leads to a transition from homogeneous to heterogeneous nucleation of critical bubbles formed at the defect site. In this case, the desorption process may be initiated at larger relative vapor pressures than those predicted by the theories of homogeneous cavitation.  相似文献   

3.
The sonication of an aqueous solution generates cavitation bubbles, which may coalesce and produce larger bubbles. This paper examines the effect of surface-active solutes on such bubble coalescence in an ultrasonic field. A novel capillary system has been designed to measure the change in the total volume resulting from the sonication of aqueous solutions with 515 kHz ultrasound pulses. This volume change reflects the total volume of larger gas bubbles generated by the coalescence of cavitation bubbles during the sonication process. The total volume of bubbles generated is reduced when surface-active solutes are present. We have proposed that this decrease in the total bubble volume results from the inhibition of bubble coalescence brought about by the surface-active solutes. The observed results revealed similarities with bubble coalescence data reported in the literature in the absence of ultrasound. It was found that for uncharged and zwitterionic surface-active solutes, the extent of bubble coalescence is affected by the surface activity of the solutes. The addition of 0.1 M NaCl to such solutes had no effect on the extent of bubble coalescence. Conversely, for charged surface-active solutes, the extent of bubble coalescence appears to be dominated by electrostatic effects. The addition of 0.1 M NaCl to charged surfactant solutions was observed to increase the total bubble volume close to that of the zwitterionic surfactant. This suggests the involvement of electrostatic interactions between cavitation bubbles in the presence of charged surfactants in the solution.  相似文献   

4.
We investigate the nonequilibrium behavior of two-dimensional gas bubbles in Langmuir monolayers. A cavitation bubble is induced in liquid expanded phase by locally heating a Langmuir monolayer with an IR-laser. At low IR-laser power the cavitation bubble is immersed in quiescent liquid expanded monolayer. At higher IR-laser power thermo capillary flow around the laser-induced cavitation bubble sets in. The thermo capillary flow is caused by a temperature dependence of the gas/liquid line tension. The slope of the line tension with temperature is determined by measuring the thermo capillary flow velocity. Thermodynamically stable satellite bubbles are generated by increasing the surface area of the monolayer. Those satellite bubbles collide with the cavitation bubble. Upon collision the satellite bubbles either coalesce with the cavitation bubble or slide past the cavitation bubble. Moreover we show that the satellite bubbles can also be produced by the emission from the laser-induced cavitation bubbles.  相似文献   

5.
High-speed photographic studies and neutron diffraction measurements have been made of water under tension in a Berthelot tube. Liquid water was cooled below the normal ice-nucleation temperature and was in a doubly-metastable state prior to a collapse of the liquid state. This transition was accompanied by an exothermic heat release corresponding with the rapid production of a solid phase nucleated by cavitation. Photographic techniques have been used to observe the phase transition over short time scales in which a solidification front is observed to propagate through the sample. Significantly, other images at a shorter time interval reveal the prior formation of cavitation bubbles at the beginning of the process. The ice-nucleation process is explained in terms of a mechanism involving hydrodynamically-induced changes in tension in supercooled water in the near vicinity of an expanding cavitation bubble. Previous explanations have attributed the nucleation of the solid phase to the production of high positive pressures. Corresponding results are presented which show the initial neutron diffraction pattern after ice-nucleation. The observed pattern does not exhibit the usual crystalline pattern of hexagonal ice [I(h)] that is formed under ambient conditions, but indicates the presence of other ice forms. The composite features can be attributed to a mixture of amorphous ice, ice-I(h)/I(c) and the high-pressure form, ice-III, and the diffraction pattern continues to evolve over a time period of about an hour.  相似文献   

6.
The mechanism of the effect of particle addition on sonochemical reaction is studied through the measurements of frequency spectrum of sound intensity for evaluating the cavitation noise and the absorbance for the liberation of iodine from an aqueous solution of KI as an index of oxidation reaction by ultrasonic irradiation in the presence or absence of alumina particles. As it is expected that both the acoustic noise and a rise in temperature in the liquid irradiated by intense ultrasound will increase with the number of collapsing bubbles, these are supposed to be the best tools for evaluating the relative number of bubbles. In the present investigation, it has been shown that the addition of particles with appropriate amount and size results in an increase in the absorbance when both the acoustic noise and the rise in the liquid temperature due to cavitation bubbles also increase. This suggests that the enhancement in the yield of sonochemical reaction by appropriate particle addition comes from an increase in the number of cavitation bubbles. The existence of particle in liquid provides a nucleation site for cavitation bubble due to its surface roughness, leading to the decrease in the cavitation threshold responsible for the increase in the number of bubbles when the liquid is irradiated by ultrasound. Thus, from the present investigation, it is clarified that the particle addition has a potential to enhance the yield in the sonochemical reaction.  相似文献   

7.
The impurity-free porous graphene prepared by acid-alkali etching-assisted sonication approach possessed the size of~5 μm, layer numbers of 3-8 and an average pore diameter of approximately 3 nm. In an acidic solution, oxygen-containing functional groups were formed due to the hydrolysis of sulfate and continuous transformations, and then under the synergistic effects of alkali and ultrasound treatment, porous graphene was obtained due to the loss of oxygen-containing functional groups.  相似文献   

8.
The processes of formation and accumulation of electric charges in the splitting and deformation of cavitation bubbles in an ultrasonic wave field are considered in terms of the local electrification theory. The influence of different factors on the electrification of the bubble-liquid interface is discussed. It is established that, in the splitting of a cavitation bubble and, possibly, in its deformation, the local field strength near the bubble surface dramatically depends on the radius of the neck formed in the bubble. It is shown that, although the stationary concentration of cavitation bubbles may be very high (~104–105 cm?3), the probability for several deformed cavitation bubbles of “required size” to emit luminescence at a given instant of time depends on the ultrasound intensity and other test conditions, a conclusion supported by experimental data.  相似文献   

9.
Metallic Ni nanoparticles were successfully prepared on the surface of titania thin film substrate by a novel method, named as chemical vapor reductive deposition (CVRD) method. The growth of the nanoparticles was based on the specific adsorption and heterogeneous nucleation on the surface of substrate, not via vapor-phase formation and subsequent sedimentation. The nanoparticle size was found to be well controllable between 10 and 30 nm by the preparation time and vapor pressure of metal complex precursor. ESCA and electron diffraction results clearly demonstrated Ni nanoparticles as metallic. Titania thin film with metallic Ni nanoparticles on its surface showed high efficiency in their photocatalysis of hydrogen evolution from decomposition of ethanol.  相似文献   

10.
We apply methods of density-functional theory in statistical mechanics to study the properties of droplets and bubbles formed on a single cylindrical plate or between two such disks immersed in a metastable fluid. Our approach allows us to analyze the properties of different types of aggregates and investigate the effect of disk size, disk separation, and solid-fluid interactions on the dynamics of a liquid-vapor phase transition. The finite size of disks induces nucleation phenomena that are not observed in the cases of either a planar wall or a slit pore. Heterogeneous nucleation on a single disk is characterized by the existence of two distinct types of critical nuclei that control the phase-transition dynamics at different supersaturations. Asymmetric droplets or bubbles formed on one side of the disk are the preferred nucleation path at high supersaturations. However, these types of aggregates become unstable close to the binodal, where they abruptly collapse into nuclei that engulf the cylindrical plates. Droplet or bubble nucleation in between two disks may occur through a free-energy barrier with one or two maxima depending on the value of the system parameters and the supersaturation. Metastable droplets or bubbles corresponding to local minima of the free energy are observed forming between two plates only after density fluctuations in the system achieve a critical size. These types of aggregates only exist for cylindrical plates larger than a minimum size given a fixed distance between the disks. The stability of these droplets and bubbles decreases when the plates are separated.  相似文献   

11.
Nano-encapsulation of a poorly soluble anticancer drug was demonstrated with a sonication assisted layer-by-layer polyelectrolyte coating (SLbL). We changed the strategy of LbL-encapsulation from making microcapsules with many layers in the walls for encasing highly soluble materials to using a very thin polycation/polyanion coating on low solubility nanoparticles to provide them with good colloidal stability. SLbL encapsulation of paclitaxel resulted in stable 100-200 nm diameter colloids with a high electrical surface ξ-potential (of -45 mV) and drug content in the nanoparticles of 90 wt%. In the top-down approach, nanocolloids were prepared by rupturing a powder of paclitaxel using ultrasonication and simultaneous sequential adsorption of oppositely charged biocompatible polyelectrolytes. In the bottom-up approach paclitaxel was dissolved in organic solvent (ethanol or acetone), and drug nucleation was initiated by the addition of aqueous polyelectrolyte assisted by ultrasonication. Paclitaxel release rates from such nanocapsules were controlled by assembling multilayer shells with variable thicknesses and were in the range of 10-20 h.  相似文献   

12.
A recently proposed method to obtain the surface free energy σ(R) of spherical droplets and bubbles of fluids, using a thermodynamic analysis of two-phase coexistence in finite boxes at fixed total density, is reconsidered and extended. Building on a comprehensive review of the basic thermodynamic theory, it is shown that from this analysis one can extract both the equimolar radius R(e) as well as the radius R(s) of the surface of tension. Hence the free energy barrier that needs to be overcome in nucleation events where critical droplets and bubbles are formed can be reliably estimated for the range of radii that is of physical interest. It is found that the conventional theory of nucleation, where the interface tension of planar liquid-vapor interfaces is used to predict nucleation barriers, leads to a significant overestimation, and this failure is particularly large for bubbles. Furthermore, different routes to estimate the effective radius-dependent Tolman length δ(R(s)) from simulations in the canonical ensemble are discussed. Thus we obtain an instructive exemplification of the basic quantities and relations of the thermodynamic theory of metastable droplets/bubbles using simulations. However, the simulation results for δ(R(s)) employing a truncated Lennard-Jones system suffer to some extent from unexplained finite size effects, while no such finite size effects are found in corresponding density functional calculations. The numerical results are compatible with the expectation that δ(R(s) → ∞) is slightly negative and of the order of one tenth of a Lennard-Jones diameter, but much larger systems need to be simulated to allow more precise estimates of δ(R(s) → ∞).  相似文献   

13.
Suspensions of human leukemia (HL-60) cells readily undergo cytolysis when exposed to ultrasound above the acoustic cavitation threshold. However, n-alkyl glucopyranosides (hexyl, heptyl, and octyl) completely inhibit ultrasound-induced (1057 kHz) cytolysis (Sostaric, et al. Free Radical Biol. Med. 2005, 39, 1539-1548). The efficacy of protection from ultrasound-induced cytolysis was determined by the n-alkyl chain length of the glucopyranosides, indicating that protection efficacy depended on adsorption of n-alkyl glucopyranosides to the gas/solution interface of cavitation bubbles and/or the lipid membrane of cells. The current study tests the hypothesis that "sonoprotection" (i.e., protection of cells from ultrasound-induced cytolysis) in vitro depends on the adsorption of glucopyranosides at the gas/solution interface of cavitation bubbles. To test this hypothesis, the effect of ultrasound frequency (from 42 kHz to 1 MHz) on the ability of a homologous series of n-alkyl glucopyranosides to protect cells from ultrasound-induced cytolysis was investigated. It is expected that ultrasound frequency will affect sonoprotection ability since the nature of the cavitation bubble field will change. This will affect the relative importance of the possible mechanisms for ultrasound-induced cytolysis. Additionally, ultrasound frequency will affect the lifetime and rate of change of the surface area of cavitation bubbles, hence the dynamically controlled adsorption of glucopyranosides to their surface. The data support the hypothesis that sonoprotection efficiency depends on the ability of glucopyranosides to adsorb at the gas/solution interface of cavitation bubbles.  相似文献   

14.
Our previous atomic force microscopy (AFM) studies successfully visualized native Bacillus atrophaeus spore coat ultrastructure and surface morphology. We have shown that the outer spore coat surface is formed by a crystalline array of approximately 11 nm thick rodlets, having a periodicity of approximately 8 nm. We present here further AFM ultrastructural investigations of air-dried and fully hydrated spore surface architecture. In the rodlet layer planar and point defects as well as domain boundaries similar to those described for inorganic and macromolecular crystals were identified. For several Bacillus species rodlet structure assembly and architectural variation appear to be a consequence of species-specific nucleation and crystallization mechanisms that regulate the formation of the outer spore coat. We propose a unifying mechanism for nucleation and self-assembly of this crystalline layer on the outer spore coat surface.  相似文献   

15.
The sonication of ionic organic liquids leads to decomposition of the liquids. Multibubble sonoluminescence spectra and headgas analysis reveal a variety of decomposition products from the sonolysis of N,N'-dialkylimidazolium ionic liquids. The decomposition is a result of acoustic cavitation, which generates localized hot spots from the implosive collapse of bubbles in the ionic liquids. Despite the negligible vapor pressure of the ionic liquids, reaction still occurs in a heated shell of the bubbles or from microdroplets thrown into the collapsing bubbles.  相似文献   

16.
Sonoluminescence (SL) of aqueous solutions of sulfuric acid and sulfur dioxide enhances with an increase in their concentration and reaches a maximum at 16 and 0.05 mol L–1, respectively. The further increase in the concentration of these substances decreases the SL intensity. The SL spectra of the solutions have a broad maximum at 450 nm. Excited SO2 molecules formed in sulfuric acid due to sonolysis are luminescence emitters. The proposed mechanism of bright SL in these systems is based on the energy transfer from the electron-excited sonolysis products to the SO2 molecules in cavitation bubbles.  相似文献   

17.
The effect of particle addition to a liquid or liquid surface on the sonochemiluminescence (SCL) was investigated using a luminol aqueous solution under ultrasonic treatment at 154 kHz. The acoustic-amplitude dependence of the SCL intensity was measured, in addition to capturing images of luminescent spatial patterns. At higher acoustic amplitudes, the cavitation efficiency dramatically reduces. This behavior is suppressed in the presence of particles. Particle addition provides nucleation sites for cavitation bubbles, lowering the cavitation threshold, and weakening the liquid surface vibration as the pressure amplitude decreases. It is shown that the reduction in SCL is suppressed under the addition of alumina particles into luminol aqueous solution. As the amount of alumina particles increases, the range of acoustic amplitude for suppressing the reduction in SCL is enlarged toward high amplitude, and the intensity of the SCL increases. Simultaneous addition of alumina particles into the solution and hydrophobic polytetrafluoroethylene (Teflon) particles onto the liquid surface is also effective. Examination of SCL images revealed that alumina particles added to the liquid at high acoustic amplitude caused the entire region of the reaction volume to be homogeneously luminous. If hydrophobic particles cover the solution surface, the surface vibration at high acoustic amplitude is fixed and the sound field becomes stable. This is responsible for suppression of the reduction in SCL and leads to a high rate of sonochemical reaction, even at high acoustic amplitude.  相似文献   

18.
The corrosion behavior of pure (99.999) aluminum in 1 M HCl solution is studied. The regularities of local gas evolution on the surface of test specimen at the open-circuit potential are determined. A number of sites, where hydrogen gas evolves, varies with the time passing through a maximum. The sizes of bubbles prior to their detachment from the specimen surface are determined. The time dependences of gas bubble radius in the course of the bubble growth are obtained. From the experimental results, it is concluded that, at the sites of hydrogen gas evolution, the cathodic reaction prevails, whereas the anodic reaction (aluminum etching) proceeds at the rest specimen surface area. No pits form at the sites of hydrogen evolution during the experiments (up to 5 h). The quantitative analysis of the cathodic polarization curve enabled us to estimate the rate (the corrosion current density) of almost general corrosion after the decay of local gas evolution. The long-term experiments (for 2 months) showed that the pitting corrosion of pure aluminum takes place in 1 M HCl.  相似文献   

19.
Models for rubber particle cavitation, shear yielding, and crazing are reviewed, and their ability to predict the large-strain deformation behavior of toughened polymers is discussed. An existing model for void initiation and expansion in rubber particles correctly predicts the observed trends: cavitation resistance increases when either the shear modulus or the surface energy of the rubber is increased, or the particle size is reduced. However, further work is needed to improve quantitative modeling of the thermally- and stress-activated void nucleation step. Shear yielding, which is also a rate process, is much better understood; here, the main problems in modeling relate to the formation and evolution of porous shear bands. Craze growth and failure are also reasonably well understood, but previous attempts at modeling have been hampered by uncertainties about craze initiation. To overcome these difficulties, a new theory of crazing is proposed, which treats initiation as a fracture process, and defines a new materials property, Gnasc, the energy required to form unit area of nascent craze. Because nascent crazes are ∼20 nm thick, Gnasc is low: calculations give values <0.5 J m−2 for polystyrene. A new criterion incorporating a plasticity factor fits the data of Sternstein and coworkers on crazing under biaxial loading. In combination with theories of particle cavitation and shear yielding, the fracture mechanics model explains why the balance between crazing and shear yielding is governed by particle size, for example in ABS. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1399–1409, 2007  相似文献   

20.
The theory of homogeneous nucleation of bubbles is combined with an expression, for their rate of growth in elastomers to obtain approximate expressions for calculating the number of bubbles formed under a high degree of supersaturation. Experimental results are given for several elastomers with argon as the dissolved gas under a variety of foaming conditions. The theory adequately describes the manner in which the number of bubbles formed depends on the temperature, surface tension of the polymer, and permeability of the dissolved gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号