首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 974 毫秒
1.
 研究了催化剂的制备条件(焙烧方式、焙烧气氛和焙烧温度)对Mo-V-Te-Nb-O上丙烷选择氧化制丙烯酸反应的影响. 结果表明,制备条件对催化剂的催化性能具有很大的影响. 与敞开式焙烧制得的催化剂相比,封闭式焙烧制得的催化剂具有较高的丙烯酸选择性,但丙烷转化率较低. 在空气中焙烧制得的催化剂对丙烯酸无选择性,但在氮气和氩气中焙烧制得的催化剂具有很高的丙烷转化率和丙烯酸选择性. 随着焙烧温度的升高,丙烷转化率降低,丙烯酸选择性升高,适宜的焙烧温度为600 ℃. 催化剂制备条件对催化剂的晶相结构也具有重要的影响. 在惰性气氛中采用600 ℃下封闭式焙烧制得的Mo-V-Te-Nb-O催化剂经210 h反应后,丙烷转化率保持为19%,而丙烯酸选择性持续升高,由32%升至50%.  相似文献   

2.
制备条件对异丁烯选择性氧化催化剂性能的影响   总被引:3,自引:0,他引:3  
通过正交实验设计,改变钼酸铵溶液的质量分数、pH值和催化剂焙烧温度,利用共沉淀法制备了一系列Mo-Bi-Co-Fe-Ce-Cs-K复合氧化物催化剂。借助于BET、TG-DSC、XRD等分析方法对催化剂的物理化学性质进行了表征。在常压连续流动固定床反应器中,系统地考察了上述三种制备条件对复合氧化物催化剂催化异丁烯选择性氧化生成甲基丙烯醛反应性能的影响。结果表明,大比表面积的催化剂具有较高的活性,而平均孔径小的催化剂选择性较差。 催化剂的最佳制备条件为: 钼酸铵溶液的质量分数10%、 pH值2~3、 焙烧温度500 ℃。在异丁烯∶空气=6∶94(体积比)、GHSV=3 600 h-1和360 ℃条件下,异丁烯转化率87.2%,甲基丙烯醛选择性72.0%,甲基丙烯醛收率62.7%。  相似文献   

3.
Cr/MgO催化剂上乙腈和甲醇选择性合成丙烯腈的研究   总被引:4,自引:0,他引:4  
用浸渍法制备了系列MgO负载过渡金属氧化物催化剂,比较了这些催化剂的催化性能,详细考察了Cr/MgO催化剂的活性组份含量、焙烧温度及反应温度等因素对乙腈和甲醇选择性合成丙烯腈的影响。结果表明,对于Cr/MgO催化剂,当负载量3%时催化性能最佳,过高的负载量对生成丙烯腈的选择性影响不大,但乙腈转化率呈下降趋势,焙烧温度对生成丙烯腈选择性的影响不大,但经600℃焙烧的催化剂乙腈转化率最高,随着反应温度提高,乙腈转化率提高,而生成丙烯腈选择性400℃左右出现最高值,CO2-TPD表明,催化剂强吸附碱中心越多,越有利于乙腈和甲醇选择性合成丙烯腈反应,Cr/MgO催化剂中引入Na2O后,提高了乙腈的转化率,而生成丙烯腈的选择性降低。  相似文献   

4.
在脉冲微反装置上考察了不同的预处理条件对Zn/Al-CLM催化剂的丙烷芳构化反应的影响。结果表明,丙烷在Zn/Al-CLM催化剂上具有一定的的反应活性和芳烃选择性,而且芳构化主要转化为苯;载体Al-CLM的焙烧温度、金属锌负载量、活化温度等对Zn/Al-CLM催化剂的丙烷芳构化性能具有重要影响。载体经500℃预焙烧制备的Zn/Al-CLM催化剂具有最好的柱结构保留度,从而表现出最佳的芳构化性能;随着锌含量的增加,Zn/Al-CLM催化剂的酸量增大,从而使丙烷转化率增大,而选择性则是锌含量质量分数为5.8%时具有极大值;400℃活化处理可使Zn与Al-CLM之间具有适中的相互作用,从而使得Zn/Al-CLM具有较高的芳烃收率。  相似文献   

5.
固相球磨法制备丙烷氧化脱氢V2O5/NiO催化剂   总被引:1,自引:0,他引:1  
以不同温度焙烧制备的NiO和V2O5为前驱物,采用固相球磨法制备了V2O5/NiO催化剂,考察了前驱物的焙烧温度对该催化剂丙烷氧化脱氢制丙烯反应性能的影响,并采用x射线衍射、N2物理吸附、电感耦合等离子体原子发射光谱、透射电子显微镜、H2程序升温还原和x射线光电子能谱等对催化剂进行了表征.结果表明,固相球磨法制备的V2O5/NiO催化剂表现出较好的丙烷氧化脱氢制丙烯催化性能,当以400℃焙烧的氧化物为前驱体时,V2O5/NiO催化剂表面含有较多的未完全还原氧物种Oδ-,因而表现出了较高的丙烯选择性.在475℃反应时,丙烷转化率可达20.1%,丙烯选择性达到71.2%.  相似文献   

6.
 分别在TritonX-100/正己醇/环己烷/水和十六烷基三甲基溴化铵(CTAB)/正己醇/水的W/O型微乳液体系中合成了Au/Fe2O3催化剂,考察了主要制备参数对催化剂水煤气变换活性的影响.结果表明,催化剂的焙烧温度、水与表面活性剂的质量比(rw)、表面活性剂浓度(W)、表面活性剂种类及催化剂活性组分金的负载量均对催化剂活性有显著的影响.催化剂的最佳焙烧温度为250℃,催化活性随着rw和W的增加而降低,由TritonX-100制得的催化剂的活性高于由CTAB制得的催化剂.当金负载量为3%,水煤气变换反应温度为200℃时,CO的转化率可达99.5%.  相似文献   

7.
环己醇和环己酮俗称KA油,是用于制备尼龙材料的己二酸和己内酰胺的重要中间体.工业上制取环己醇和环己酮的方法主要为苯酚加氢法、环己烯水合法和环己烷氧化法,其中环己烷氧化法的应用最为普遍,包括硼酸氧化法、过氧化物氧化法和钴盐催化氧化法三种路线.为获得适宜的环己醇和环己酮选择性,工业上环己烷氧化单程转化率通常控制在5.0%以下,从而使得产物选择性在80%以上.因此,现有环己烷氧化法生产KA油的最大挑战是如何同时获得高环己烷转化率和高KA油选择性.迄今,已有多种催化剂被尝试用于环己烷氧化反应,包括金属卟啉、金属氧化物、分子筛、碳纳米管和金属-有机骨架材料等.由于均相催化剂无法从环己烷氧化反应体系中分离出来,导致催化剂不能重复利用,因此多相催化剂的研究更受青睐.另外,由于采用氧气为氧化剂时具有环境友好和更高的原子经济性,因此氧气选择性氧化环己烷反应已逐渐成为环己烷氧化法制KA油中最具挑战性的研究.目前,氧气为氧化剂时的环己烷转化率通常低于过氧化氢和叔丁基过氧化氢等为氧化剂时的转化率,其关键在于适用于固(催化剂)液(环己烷)气(氧化剂)反应体系的高性能催化剂.本课题组前期研究了系列金属掺杂分子筛(Ce/AlPO-5,Ce-MCM-41/48和Mg-Cu/SBA-15等)对氧气催化氧化环己烷的反应性能,发现无论是稀土还是过渡金属掺杂,通过影响环己烷氧化反应的自由基产生和反应历程,可显著提高环己烷转化率或者KA油的选择性.基于此,本文选择原料易得、成本较低和氧化能力强的氧化锰(MnOx)作为具有强氧化能力的过渡金属氧化物的代表,深入研究了MnOx的焙烧温度对其结构和选择性氧化环己烷反应性能的影响,同时研究了反应条件对催化剂性能的影响.结果表明,400℃焙烧制得的催化剂(MnOx-400)比350,450和500℃焙烧制得的催化剂具有更高的活性.在最佳反应条件(140℃,O2起始压力0.5 MPa,反应4 h)下,使用20 mg MnOx-400可使环己烷转化率达8.0%,KA油得率为5.0%.过高的反应温度、过长的反应时间和过高的反应压力都会导致产物被过度氧化,KA油选择性降低.另外,该催化剂重复使用10次,其活性没有明显下降,显示出了很好的稳定性.表征测试结果表明,MnOx催化剂在不同温度焙烧后形成了不同的结晶形态:焙烧温度小于500℃时,催化剂主要组成为Mn3O4和Mn5O8,500℃时主要为Mn3O4,Mn5O8和Mn2O3.而且随着焙烧温度升高,MnOx催化剂的比表面积逐渐降低.相比于350℃焙烧制得的催化剂,MnOx-400催化剂具有更好的结晶形态,这可能是造成其活性较好的原因.而相比于MnOx-400,500℃焙烧制得的催化剂表面Mn4+含量和表面吸附氧含量较低,使其吸附和活化氧能力降低,从而导致催化剂活性低于MnOx-400;但是吸附和活化氧能力的降低有利于减缓反应产物的深度氧化,因而KA油的选择性增加.  相似文献   

8.
采用负压沉积沉淀法、等体积浸渍法、负压等体积浸渍法等方法制备了纳米Au/TS-1催化剂,研究了深床焙烧和等离子体焙烧,以及焙烧温度和焙烧气氛对催化剂中纳米金粒子大小和催化性能的影响,并采用ICP、TEM、XRD、UV-vis、XPS对催化剂金粒子进行了物化性能表征,采用甲醇羰基化制乙酸甲酯反应表征催化性能.结果表明,不同制备方法、不同焙烧方法、不同焙烧温度和焙烧气氛对负载型纳米Au/TS-1沸石分子筛催化剂中金粒子的大小、形貌、物化性质和催化性能有明显影响.其中,3种制备方法中,氢气气氛下焙烧均比空气和氮气气氛下焙烧得到的催化剂的金粒子尺寸更小,分散更均匀,约为5~10 nm.与其它方法相比,负压沉积沉淀法可制得分散更均匀的金粒子,Au/TS-1沸石催化剂中的金粒子尺寸更小,平均粒径为1~5 nm.催化性能评价结果显示,3种方法制备出的负载型金催化剂用于催化甲醇羰基化制乙酸甲酯反应体系中,甲醇的转化率分别为85%、75%、60%,乙酸甲酯选择性可高达68%,反应温度200℃为最好.  相似文献   

9.
制备条件对Pd催化剂上C3H6选择性还原NO性能的影响   总被引:2,自引:0,他引:2  
采用浸渍法和溶胶凝胶法,制备了Pd/AI2O3和Pd/AI2O3-CeO2样品,并测定了不同温度焙烧后催化剂的物相、比表面积及对丙烯选择性还原NO的活性。对于Pd/AI2O3,随着焙烧温度的提高,其NO的最大转化率逐渐下降,对应的反应温度在290-310℃左右,而溶胶凝胶法制备的样品活性略高于浸渍法制备的样品;对于Pd/AI2O3-CeO2,经600℃焙烧后,其NO的最大转化率为22%,900℃焙烧的催化剂样品上NO的最大转化率达到40%左右,对应的反应温度也逐渐下降,说明活性随焙烧温度的提高而明显提高,溶胶凝胶法和浸渍法制备的样品结果很接近,浸渍法制备了若干不同Pd负载量的Pd/AI2O3样品,活性测定的结果表明,Pd含量在0.5%左右的催化剂样品中具有最高的活性。  相似文献   

10.
壳聚糖负载Pd催化剂的制备和在苯乙酮手性加氢中的作用   总被引:2,自引:0,他引:2  
将天然手性高分子聚合物壳聚糖(CS)负载到SiO2上制得CS-SiO2载体,通过配位反应将Pd链接到该载体上,制得多相Pd-CS-SiO2手性加氢催化剂.以苯乙酮不对称氢转移加氢为模型反应,在空气氛围中研究了Pd-CS-SiO2的催化反应性能,考察了Pd的负载量、碱助剂、反应温度、反应时间等对反应转化率、选择性和对映选择性等的影响.结果表明,Pd-CS-SiO2催化剂具有较好的催化活性和选择性.使用强碱NaOH为助催化剂时,可提高氢转移加氢反应的速率和转化率;高的Pd负载量有利于苯乙酮转化率的提高,降低Pd的负载量有利于提高产物的对映选择性;提高反应温度有利于提高催化剂的反应活性,降低反应温度有利于提高产物的对映选择性.在30℃反应24h,产物R-1-苯乙醇的对映体过量值可达13.7%.  相似文献   

11.
采用负压沉积沉淀法制备了纳米Au/HZSM-5催化剂前体,研究了深床焙烧和等离子体焙烧两种方法,以及焙烧温度和焙烧气氛对催化剂中纳米金粒径和催化性能的影响,并采用ICP、TEM、XRD、UV-vis、XPS等表征方法对催化剂金粒子进行了物化性能表征,采用合成气羰基化制乙酸甲酯反应表征催化性能。结果表明,不同焙烧方法和不同焙烧温度及气氛对负载型纳米Au/HZSM-5催化剂中金粒径、形貌、物化性质和催化性能有明显影响。其中,以等离子体焙烧方法在500℃氮气气氛下制备的纳米1.86%Au/HZSM-5催化剂中的金粒径最小,为2-5 nm。用于催化合成气羰基化制乙酸甲酯反应,原料中CO的转化率为67%,乙酸甲酯选择性可达78%。  相似文献   

12.
王真真  何珍珍  韩文锋  刘化章 《化学通报》2016,79(12):1139-1144
本文研究了前驱体MoO_3的负载量、浸渍温度和焙烧温度等制备条件对Mo S2/Al_2O_3耐硫甲烷化催化剂性能的影响,并通过XRD和H2-TPR表征了催化剂的物相和还原性能。结果表明,随着负载量增加,MoO_3与Al_2O_3间的相互作用增强,Al2(Mo O4)3相增多,导致催化剂更难被还原硫化,MoO_3还原温度升高。浸渍温度对CO转化率和CH4选择性有一定的影响,浸渍温度为70℃时,MoO_3的生成增多,且还原温度最低,CO转化率较高,而CH4选择性和CO_2选择性变化不大。随着焙烧温度升高,CO转化率先升高后降低,对CH4和CO_2选择性影响不大,其中以450℃焙烧的CO转化率最高,600℃焙烧的CO转化率最低。当焙烧温度在400~450℃时,Al2(Mo O4)3和Mo4O11的特征峰基本上消失,能够完全生成MoO_3,且结晶度较好。因此,合适的焙烧温度为400~450℃。  相似文献   

13.
Cu-Mn-Ce/γ-Al2O3汽车尾气净化催化材料的合成及性能的研究   总被引:1,自引:1,他引:1  
采用固定床反应装置,模拟汽车尾气的组成成分,以CO氧化和NH3选择还原NO为探针反应,研究了焙烧温度和焙烧时间等因素对复合金属氧化物催化材料Cu-Mn-Ce-O/γ-Al2O3的催化活性的影响,并考察了该催化剂的抗硫化中毒性能。在本研究条件下,焙烧温度在700℃左右,焙烧时间为2.5h时,催化剂对NO-CO体系中CO的氧化率在76%,以上,对NH3-NO体系中的NO的最佳催化还原率在80%以上。催化剂在3.O%S02/空气气氛中强制中毒后,其在NH3-NO气氛中的最佳反应温度.450℃,同样条件下未中毒催化剂的最佳反应温度为350℃左右,并且催化剂中毒后对NO—NH3的最大转化率没有下降,但是对NO-CO体系的反应活性明显下降,说明该催化剂具有良好的高温活性和抗硫中毒性能。  相似文献   

14.
胥会祥  吕剑 《催化学报》2003,24(5):379-384
 用混合法制备了Cr3+/MgF2氟化催化剂,以CH2F2(HFC-32)的合成为目标反应考察了制备条件对催化剂性能的影响.结果表明,在N2气氛中焙烧的催化剂的比表面积及其氟化活性高于空气中焙烧的催化剂;在300~500℃的N2气氛中焙烧时,催化剂的活性随焙烧温度升高而降低;随活化温度的升高,催化剂活性增高,在350℃达最大值;Cr含量为10%时,催化剂的孔容、比表面积和活性最大.DSC和TGA结果表明,载体MgF2在500℃以下未发生热分解和晶形转变,Cr3+/MgF2催化剂也具有较高的稳定性.再生性能、使用寿命及对CF3CH2F(HFC-134a)合成的催化活性评价实验表明,Cr3+/MgF2催化剂在使用300h后仍保 持较高的活性,且易于再生.  相似文献   

15.
 以机械混合法、浸渍法和共沉淀法分别制备了4%Ni-Al2O3催化剂,并用X射线衍射、程序升温还原、紫外-可见漫反射光谱和N2吸附等方法对催化剂的体相和表面结构进行了表征,系统考察了制备方法及焙烧温度对Ni-Al2O3催化剂催化丙烷选择性还原NO性能的影响. 结果表明, Ni-Al2O3中存在NiO和NiAl2O4两种镍相,前者是丙烷氧化活性中心,后者是NO选择性催化还原的活性中心. 共沉淀法制备的催化剂活性最好, 550 ℃焙烧的Ni-Al2O3催化剂在反应温度为450和500 ℃时NO转化率接近100%.  相似文献   

16.
采用沉淀法制备了Mo-Bi-Co-Fe-Cs复合氧化物催化剂, 并用于异丁烯部分氧化制备甲基丙烯醛反应, 结合H_2-TPR、 XRD、 BET和TEM表征, 考察了焙烧温度以及焙烧时间对催化剂物理化学性质及催化性能的影响.研究结果表明, 随焙烧温度升高, 催化剂物相结构没有明显的改变, 而催化剂颗粒则逐渐增大, 氧化能力降低, 且组分之间的协同作用减弱;当焙烧温度提高到540 ℃时, 催化剂局部颗粒已出现烧结. 催化剂活性随焙烧温度提高逐渐下降, 而甲基丙烯醛选择性则在焙烧温度为520 ℃时达到最大值, 焙烧温度对催化剂性能的影响可能因催化剂表面活性位密度不同所致.合适的焙烧温度为520 ℃, 焙烧时间为5 h, 此时异丁烯转化率为98.4%时, MAL选择性可达到87.2%, 具有较好的反应效果.  相似文献   

17.
系统地研究了还原剂(氯化铵)添加到丙烷选择氧化合成丙烯酸催化剂Mo-V-Te-Nb-O混合氧化物中对催化剂性能的影响.实验结果表明,在制备过程中还原剂的存在明显地影响了所得催化剂晶格氧的活动性,而晶格氧的活动性对Mo-V-Te-Nb-O混合氧化物的催化活性有重要的影响.进一步的研究表明,添加还原剂引起了催化剂形貌和相组成的变化,这些对于丙烯酸的形成有着重要作用.具有较多M1相含量的催化剂在低温(<653 K)时表现出了高丙烯酸选择性,而具有较多M2相含量的催化剂则在高温(>653 K)时更有利于丙烯酸的生成.  相似文献   

18.
陈慕华  储伟  张雄伟 《催化学报》2003,24(10):775-778
 采用射频等离子体技术制备了α-Al2O3(MgO修饰)负载钯催化剂,以乙炔选择加氢为模型反应考察了制备方法、钯含量、助剂种类及反应温度对催化剂性能的影响.结果表明,采用等离子体技术制备的催化剂具有催化活性及乙烯选择性高、操作简便和工艺流程短等优点,在50℃下反应时乙炔转化率可达100%,乙烯选择性可达71.3%,而且在反应20h后催化剂样品仍保持有高活性.CeO2助剂的加入能改善催化剂的催化性能.  相似文献   

19.
环己醇和环己酮俗称KA油,是用于制备尼龙材料的己二酸和己内酰胺的重要中间体.工业上制取环己醇和环己酮的方法主要为苯酚加氢法、环己烯水合法和环己烷氧化法,其中环己烷氧化法的应用最为普遍,包括硼酸氧化法、过氧化物氧化法和钻盐催化氧化法三种路线.为获得适宜的环己醇和环己酮选择性,工业上环己烷氧化单程转化率通常控制在5.0%以下,从而使得产物选择性在80%以上.因此,现有环己烷氧化法生产KA油的最大挑战是如何同时获得高环己烷转化率和高KA油选择性.迄今,己有多种催化剂被尝试用于环己烷氧化反应,包括金属卟啉、金属氧化物、分子筛、碳纳米管和金属-有机骨架材料等.由于均相催化剂无法从环己烷氧化反应体系中分离出来,导致催化剂不能重复利用,因此多相催化剂的研究更受青睐.另外,由于采用氧气为氧化剂时具有环境友好和更高的原子经济性,因此氧气选择性氧化环己烷反应己逐渐成为环己烷氧化法制KA油中最具挑战性的研究.目前,氧气为氧化剂时的环己烷转化率通常低于过氧化氢和叔丁基过氧化氢等为氧化剂时的转化率,其关键在于适用于固(催化剂)液(环己烷)气(氧化剂)反应体系的高性能催化剂.本课题组前期研究了系列金属掺杂分子筛(Ce/AlPO-5,Ce-MCM-41/48和Mg-Cu/SBA-15等)对氧气催化氧化环己烷的反应性能,发现无论是稀土还是过渡金属掺杂,通过影响环己烷氧化反应的自由基产生和反应历程,可显著提高环己烷转化率或者KA油的选择性.基于此,本文选择原料易得、成本较低和氧化能力强的氧化锰(MnO_x)作为具有强氧化能力的过渡金属氧化物的代表,深入研究了MnO_x的焙烧温度对其结构和选择性氧化环己烷反应性能的影响,同时研究了反应条件对催化剂性能的影响.结果表明,400℃焙烧制得的催化剂(MnO_x-400)比350,450和500℃焙烧制得的催化剂具有更高的活性.在最佳反应条件(140℃,O_2起始压力0.5 MPa,反应4 h)下,使用20 mg MnO_x-400可使环己烷转化率达8.0%,KA油得率为5.0%.过高的反应温度、过长的反应时间和过高的反应压力都会导致产物被过度氧化,KA油选择性降低.另外,该催化剂重复使用10次,其活性没有明显下降,显示出了很好的稳定性.表征测试结果表明,MnO_x催化剂在不同温度焙烧后形成了不同的结晶形态:焙烧温度小于500℃时,催化剂主要组成为Mn_3O_4和Mn_5O_8,500℃时主要为Mn_3O_4,Mn_5O_8和Mn_2O_3.而且随着焙烧温度升高,MnO_x催化剂的比表面积逐渐降低.相比于350℃焙烧制得的催化剂,MnO_x-400催化剂具有更好的结晶形态,这可能是造成其活性较好的原因.而相比于MnO_x-400,500℃焙烧制得的催化剂表面Mn~(4+)含量和表面吸附氧含量较低,使其吸附和活化氧能力降低,从而导致催化剂活性低于MnO_x-400;但是吸附和活化氧能力的降低有利于减缓反应产物的深度氧化,因而KA油的选择性增加.  相似文献   

20.
浆态法制备的MoVTeNbO催化剂上的乙烷氧化脱氢   总被引:1,自引:0,他引:1  
 采用浆态法在N2气氛下焙烧制得了MoV0.3Te0.23Nb0.1Ox催化剂. 在以该催化剂催化的乙烷氧化脱氢制乙烯的反应中,440 ℃下乙烷的转化率和乙烯的选择性均在90%左右,乙烯产率达80.9%. 但在空气气氛下焙烧得到的催化剂几乎没有催化活性. 用XRD和SEM等方法考察了催化剂的结构.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号