首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mn-Al和Cu-Mn-Al复合氧化物催化苯甲醇选择氧化反应   总被引:3,自引:3,他引:0  
吴藏藏  郑丽  徐秀峰 《分子催化》2016,30(6):532-539
用溶胶-凝胶法制备了不同组成的Mn-Al和Cu-Mn-Al复合氧化物两组催化剂,用于苯甲醇选择氧化反应.用X射线衍射(XRD)、N2物理吸附(BET)、扫描电镜(SEM)、H_2程序升温还原(H_2-TPR)、O_2程序升温脱附(O_2-TPD)和X射线光电子能谱(XPS)技术对催化剂进行了结构表征,考察了催化剂组成对催化活性的影响.结果表明:以甲苯为溶剂,O_2为氧化剂,353 K反应5 h,Mn_2Al和Cu_(0.3)Mn_(0.7)Al_2催化剂上的苯甲醇转化率分别为36.6%和40.9%,苯甲醛选择性均为100%.进一步研究表明:催化剂活性与其H2还原性和O_2吸附性有关,高活性的催化剂吸附氧多,生成的活性氧易参与反应.  相似文献   

2.
<正>Two cobalt(Ⅱ) complexes 1 and 2 of Schiff bases derived from amino acids were synthesized and used for oxidation of benzyl alcohol with molecular oxygen at different conditions of pH,solvent,temperature and complex/alcohol molar ratio to optimize reaction conditions and to evaluate the catalytic efficiency of new cobalt Schiff base complexes.Under obtained optimum conditions,various alcohols were oxidized to corresponding aldehydes and ketones.  相似文献   

3.
合成了一系列过渡金属Zn取代的Keggin型磷钨杂多酸的季铵盐,采用傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)等方法表征了杂多化合物的结构.并将其用于苯甲醇无溶剂氧化合成苯甲醛的反应,考察了催化剂种类、反应条件对苯甲醇氧化的影响.实验结果表明,在无任何溶剂的情况下,Zn取代的Keggin型磷钨四丁基铵盐具有最佳的催化活性,反应时间仅为30 min,苯甲醇的转化率可以达到95.6%,苯甲醛的选择性达到了96.4%.在对杂多酸季铵盐结构的研究基础上,对可能的反应机理进行了初步探讨.  相似文献   

4.
Oxidation of alcohols to the corresponding aldehydes or ketones is one of the most fundamental reactions in organic chemistry [1,2]. Some of the products of the oxidation exhibit an important role in the organic synthesis as well as pharmaceutical synthesis. In most reactions, the lanthanide complexes show satisfied catalytic activities for some compounds. Furthermore, there has been increasing interest in the lanthanide complexes and several reports have appeared in the literature [3, 4]. But the exploitation of these complexes for the oxidation of some organic substrates has been limited. Here we reported a method for the preparation and the catalytic properties as well as the recycling of lanthanide complexes in oxidation of alcohols.The synthetic procedure for the polymer supported lanthanide complexes is shown as following(scheme 1):●-NH2+CICH2COOH(C2Hs)3N→●-NHCH2COOHM=Ce(Ⅲ), Tb(Ⅲ), Sm(Ⅲ)scheme 1The oxidation of benzyl alcohol was carried out in the presence of iodosylbenzene by the polymer supported Ce(Ⅲ), Tb(Ⅲ) and Sm(Ⅲ) catalysts at 80℃ for 4.0h, the yields of benz-aldehyde are as following (table 1):Table 1 Oxidation of benzyl alcohol with the supported catalysts**Reaction condition: benzyl alcohol 0.1 mmol, iodosylbenzene 0.15mmol,catalyst 0.2mg, 80℃ for 4.0h in 1,2-dichloroethane.It can be seen from the table that the Tb(Ⅲ) complex shows higher catalytic activity for the oxidation of benzyl alcohol. Further investigation is now being carded on to optimize the results.  相似文献   

5.
吴云  杨本宏  李萌  裘灵光 《化学通报》2011,(11):1003-1003
具有纳米孔洞的金属-有机骨架材料Cu3(BTC)2(H2O)3为催化剂,过氧化氢为氧化剂,利用紫外可见光谱研究其催化氧化苯甲醇生成苯甲醛的催化反应动力学行为,系统地讨论了纳米孔洞金属-有机骨架材料的催化动力学。研究结果表明,随着反应介质的pH、催化剂与反应底物的摩尔比和反应温度的升高,准一级反应速率常数kobsd也会随...  相似文献   

6.
将Cr(salen)配合物分别嫁接于介孔SiO2,MCM-41和SBA-15上制备成非均相Schiff碱铬配合物,并用FT-IR,UV-Vis,XRD,N2吸附和元素分析等对非均相铬配合物进行了表征.以30%的H2O2为氧化剂,以非均相铬配合物为催化剂,在无有机溶剂、相转移催化剂和添加剂的条件下,研究了选择性催化氧化苯甲醇合成苯甲醛的反应.结果表明,非均相铬配合物都表现出较好的催化性能.选择不同的介孔载体对非均相铬配合物的催化性能有较大的影响,Cr(salen)/MCM-41配合物显示有最好的催化性能;在优化的反应条件下,苯甲醇转化率可达52.5%,苯甲醛选择性为100%,且该非均相铬配合物重复使用4次后仍保持较好的催化性能.  相似文献   

7.
通过大分子反应,将苯甲醛(BA)和邻氨基苯酚(AP)形成的双齿席夫碱配基键合在交联聚甲基丙烯酸缩水甘油酯(CPGMA)微球表面,形成固载有席夫碱配基的载体微球BAAP-CPGMA,再通过与铜盐的配位螯合反应,制备了固载有席夫碱铜配合物的微球[Cu(BAAP)2]-CPGMA.将该固载化铜配合物与均相的2,2,6,6-四甲基哌啶氮氧自由基(TEMPO)构成共催化体系TEMPO/[Cu(BAAP)2]-CPGMA,应用于分子氧氧化苯甲醇的催化氧化过程.我们考察了该共催化体系的催化性能,并探索研究了催化氧化机理.实验结果表明,共催化体系TEMPO/[Cu(BAAP)2]-CPGMA可在温和条件下(室温、常压的氧气)高效地将苯甲醇氧化为苯甲醛(选择性100%,苯甲醛产率93%),并具有良好的循环使用性能.  相似文献   

8.
为研究脂肪叔胺结构对内酯开环聚合规律的影响,以三乙胺( TEA)、N,N,N′,N′-四甲基乙二胺(TMEDA)、N,N,N′,N″,N″-五甲基二亚乙基三胺(PM DTA)3种不同结构的叔胺催化碳酸三亚甲基酯(TMC)和左旋丙交酯( L-LA)开环聚合.结果显示,在55℃的THF溶液中,以苄醇为引发剂,3种叔胺均能催...  相似文献   

9.
Carbon materials have become one of the research hotspots in the field of catalysis as a typical representative of non-metallic catalytic materials. Herein, a facile synthetic strategy is developed to fabricate a series of hollow carbon nanoworms (h-NCNWs) that contain nitrogen up to 9.83 wt% by employing graphitic carbon nitride (g-C3N4) as the sacrificing template and solid nitrogen source. The h-NCNWs catalysts were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscope (HR-TEM), N2 adsorption-desorption, Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric (TG), Raman spectra, and X-ray photoelectron spectroscopies (XPS). The catalytic activities of the h-NCNWs catalysts for selective oxidation of benzyl alcohol with O2 were also evaluated. The characterization results revealed that the h-NCNWs catalysts displayed a unique hollow worm-like nanostructure with turbostratic carbon shells. The nitrogen content and shell thickness can be tuned by varying the relative ratio of resorcinol to g-C3N4 during the preparation process. Furthermore, nitrogen is incorporated to the carbon network in the form of graphite (predominantly) and pyridine, which is critical for the enhancement of the catalytic activity of carbon catalysts for the selective oxidation of benzyl alcohol. At a reaction temperature of 120 ℃, a 24.9% conversion of benzyl alcohol with > 99% selectivity to benzaldehyde can be achieved on the h-NCNWs catalyst prepared with a mass ratio of resorcinol to g-C3N4 of 0.5. However, the catalytic activities of the h-NCNWs catalysts were dependent on the amount of N dopants, in particular graphitic nitrogen species. The conversion of benzyl alcohol markedly decreased to 13.1% on the h-NCNWs catalyst prepared with a mass ratio of resorcinol to g-C3N4 of 1.5. Moreover, the h-NCNWs catalyst showed excellent stability during the reaction process. The conversion of benzyl alcohol and the high selectivity to aldehyde can be kept within five catalytic runs over the h-NCNWs0.5 catalyst. These results indicate that rationally designed carbon materials have great potential as highly efficient heterogeneous catalysts for oxidation reactions.  相似文献   

10.
制备了以铜、钴、锰为中心离子的三种单核金属配合物L1Cu、L1Co、L1Mn (L1=N,N'-(2-羟乙基)丙二酰胺)和三种双核金属配合物L2Cu、L2Co、L2Mn (L2=N,N'-{2-(2-羟乙基氨基)乙基}丙二酰胺). 研究发现在缓冲溶液中六种金属配合物能将对甲氧基苦杏仁酸(4-MMA)高选择性地氧化成对甲氧基苯甲醛(AAD)以及少量对甲氧基苯甲酸(4-MBA), AAD的选择性(S)大于96%. 然而不同的催化体系在反应速率上表现了很大的不同: 铜金属配合物的催化活性最好; 双核配合物表现出更高的催化效率. 研究了酒石酸(TA)、磷酸(H3O4)、醋酸(HAc)三种缓冲溶液体系对L1Cu催化H2O2氧化4-MMA反应的影响, 结果表明缓冲溶液种类对反应速率和选择性影响很大.研究了35℃时弱酸性条件(pH值从2.5到4.5的范围内)在酒石酸缓冲溶液中六种金属配合物催化H2O2氧化4-MMA的动力学, 计算出不同pH值条件下催化反应的表观反应速率常数kobs, 并且讨论了pH值对催化反应的影响.  相似文献   

11.
Sixteen phenolic compounds, twelve of which derived from lignin, were evaluated as potential mediators for laccase‐assisted bleaching of pulp. The electrochemical behavior of these phenols, alone and in the presence of the lignin model compound veratryl alcohol, was studied by means of cyclic voltammetry. All phenolic compounds showed catalytic effect on the veratryl alcohol electrochemical oxidation. However, they could not be considered as mediators, since their oxidation products are not stable and regeneration of their reduced forms was not observed. The redox potentials of the phenolic compounds seem to have a negligible effect on their catalytic efficiency, supporting a H‐abstraction oxidation mechanism. This mechanism was also confirmed by electrochemical studies of 2,4,6‐trimethylphenol in acetonitrile and in the presence of benzyl alcohols.  相似文献   

12.
苏浩  杨春 《应用化学》2014,31(8):958-964
以Keggin结构的几类杂多酸和三乙胺(TEA)为原料,通过简单的酸碱反应合成了相应杂多酸的TEA盐。 并以它们作为催化剂,30%H2O2作氧化剂,在不使用长链相转移剂的条件下,研究了它们催化苯甲醇选择氧化制备苯甲醛的反应性能。 结果表明,该类催化剂在苯甲醇的选择氧化反应中具有比相应杂多酸更高的催化活性或选择性。 其中[TEAH]H2PW12O40为最佳催化剂,在适宜的反应条件下,该催化剂上苯甲醇转化率可达99.5%以上,苯甲醛选择性达~100%。 催化剂可以被分离和循环使用多次,活性、选择性基本不变。 用水作溶剂,避免了有机溶剂的使用,是一个高效、绿色的苯甲醛选择氧化体系。  相似文献   

13.
Five copper complexes [(L(1))(2)Cu(H(2)O)](ClO(4))(2) (1), [(L(1))Cu(H(2)O)(3)](ClO(4))(2) (1a), [(L(3))(2)Cu(H(2)O)](ClO(4))(2) (2), [(L(5))(2)Cu(H(2)O)](ClO(4))(2) (3) and [(L(6))(2)Cu](ClO(4)) (4) (where L(1) = 1,10-phenanthroline, L(3) = 1,10-phenanthroline-5,6-dione, L(5) = 1,10-phenanthrolinefuroxan and L(6) = 2,9-dimethyl-1,10-phenanthrolinefuroxan), and in situ prepared copper complexes of 2,9-dimethyl-1,10-phenanthroline (L(2)) or 2,9-dimethyl-1,10-phenanthrolinedione (L(4)) were used for aerial oxidation of primary alcohols to the corresponding aldehydes under ambient conditions. The copper catalysts have been found to catalyze a series of primary alcohols including one secondary alcohol with moderate turnover numbers and selectivity towards primary alcohols. Copper(ii) complexes 1 (or 1a) and 2 were found to be the better catalysts among all other systems explored in this study. A copper(ii)-superoxo species is implicated to initiate the oxidation reaction. Structural and electronic factors of 1,10-phenanthroline-based ligands affecting the catalytic results for aerial oxidation of alcohols are discussed.  相似文献   

14.
A polymer-supported diacetatobis(2-quinolylbenzimidazole)copper(II) complex [PS–(QBIM)2Cu(II)] was synthesized by functionalization of chloromethylated polystyrene cross-linked with 6.5 % divinyl benzene with 2-(2′-quinolyl)benzimidazole and subsequent treatment with Cu(OAc)2 in methanol. The complex was characterized by physical, analytical and spectroscopic techniques. Electronic and ESR spectra, together with magnetic susceptibility measurements, indicated that the complex was paramagnetic with distorted octahedral geometry around the copper. The complex was found to be active toward oxidation of various alcohols including phenol, benzyl alcohol and cyclohexanol using 70 % aqueous tert-butyl hydroperoxide under mild conditions. Under the optimized reaction conditions, cyclohexanol gave 100 % conversion to cyclohexanone, benzyl alcohol gave 98 % yield of benzaldehyde and phenol gave 89 % yield of catechol and 4 % of hydroquinone. The complex was recycled five times without much loss in catalytic activity.  相似文献   

15.
纳米孔炭负载 MnOx 催化剂上苯甲醇氧化反应性能   总被引:1,自引:0,他引:1  
 以纳米孔炭 (NC) 为载体, 采用浸渍法制备了一系列 MnOx/NC 催化剂, 并用于以空气为氧源的苯甲醇液相氧化反应. 通过 X 射线衍射、X 射线光电子能谱、N2 吸附-脱附和 H2-程序升温还原等手段对催化剂进行了表征, 考察了催化剂中 Mn 负载量和焙烧温度, 以及反应条件等对反应性能的影响. 结果表明, 10%MnOx/NC 催化剂的活性较高, 反应 4 h 后苯甲醇转化率可达 80.4%; 明显高于活性炭负载的 MnOx 催化剂. 这主要归因于其表面存在大量高分散、且易于还原的 Mn 物种.  相似文献   

16.
Mn(II), Co(II), Ni(II) and Cu(II) and N,N‐bis(3,5‐di‐tert‐butylsalicyidene)‐2,2‐dimethyle‐1,3‐diaminopropane complexes have been synthesized in Y zeolite cavity by the reaction of ion‐exchanged metal ions with the flexible ligand molecules. The host‐guest materials obtained have been characterized by elemental analysis, XRD, surface area, pore volume, TGA, FT‐IR and UV‐Vis techniques. Analysis of data indicates that formation of complexes in the pores Y zeolite without affecting the zeolite framework structure. Also, we report the oxidation of cyclohexanol catalyzed by host‐guest catalyst with tert‐buthyl hydrogen peroxide as oxygen donor. The activity of benzyl alcohol oxidation decreases in the series‐[Co(L)]/NaY > [Cu(L)]/NaY > [Mn(L)]/NaY > [Ni(L)]/NaY and the percent of product completely depend to catalyst. Zeolite complexes are stable enough to be reused and are suitable to be utilized as partial oxidation catalysts.  相似文献   

17.
陈川  徐迎迪  薛叙明  周鹏鹏 《应用化学》2019,36(11):1286-1293
将MgAl水滑石引入到金属四苯基卟啉(MTPPs,M=Co,Fe,Mn,Ni)催化氧化体系中,实现了醇的选择性氧化。 结果表明,在分子氧/异丁醛体系中,CoTPP在苯甲醇氧化制苯甲醛反应中表现出优异的催化活性,MgAl水滑石添加剂可有效地提高醛的选择性。 在苯甲醇1 mmol、乙腈2 mL、CoTPP 5 mg、MgAl水滑石18 mg、异丁醛5 mmol、反应温度60 ℃、氧气气氛下反应2 h,苯甲醇的转化率和苯甲醛的选择性分别达到94%和92%。 另外,此催化体系在其它醇类化合物的氧化反应中也具有较好催化活性。  相似文献   

18.
Metalation of 2,4,6-tri(methyl)phenol ((Me)ArOH) and 2,6-di(tert-butyl)-4-methylphenol ((Bu)ArOH) with NaN(SiMe(3))(2) in toluene and in the presence of stoichiometric amounts of the polydentate amines N,N,N',N'-tetramethylethylenediamine (TMEDA) and N,N,N',N',N'-pentamethyldiethylenetriamine (PMDETA) affords three new sodium aryloxide complexes [Na(μ-OAr(Bu))(TMEDA)](2) (3), [Na(μ-OAr(Me))(PMDETA)](2) (4), and [Na(OAr(Bu))(PMDETA)] (5). Complexes 3 to 5 have been isolated as crystalline materials in reasonable yields and characterized in the solid state by X-ray crystallography and in solution by NMR spectroscopy. Complexes 3 to 5 and the related [tris(2-dimethylaminoethyl)amine] (Me(6)TREN) derivatives [Na(OAr(Me))(HOAr(Me))(Me(6)TREN)] (1) and [Na(OAr(Bu))(Me(6)TREN)] (2), recently prepared in our group, are shown to be active as initiators for the ring-opening polymerization (ROP) of rac-lactide with benzyl alcohol as a co-initiator. However, during the course of the polymerization reactions intrachain and stereorandom transesterification side-reactions were observed under some of the experimental conditions tested.  相似文献   

19.
Bimetallic Au-Pd nanoparticles(NPs) with synergistic effect between Au and Pd atom have shown excellent catalytic activity toward benzyl alcohol oxidation. The catalytic activities of metal NPs supported within metal-organic frameworks (MOFs) are affected by the electronic interactions between metal NPs and MOFs. Taking the advantages of ultrathin nanosheets, we confine the highly dispersed Au-Pd NPs within ultrathin nanosheets of MOF-Ni(NMOF-Ni) to fabricate AuxPdy@NMOF-Ni as catalysts. Under base-free and atmospheric pressure conditions, the as-prepared AuxPdy@NMOF-Ni catalysts exhibit superior activity and selectivity for benzyl alcohol oxidation. This work highlights the synergistic effects among different components in composite catalysts effectively improving the activity and offers a new way for designing efficient catalysts toward benzyl alcohol oxidation.  相似文献   

20.
A series of chromium(III) Schiff base complexes immobilized on MCM-41 were prepared and characterized by various physicochemical and spectroscopic methods. The complexes were used for the selective oxidation of alcohols by 30% hydrogen peroxide without any organic solvent, phase transfer catalyst or additive. The immobilized complexes proved to be effective catalysts and generally exhibited much higher catalytic performance than their corresponding homogeneous analogs. The catalytic performance of the immobilized complexes was also found to be closely related to the Schiff base ligands used. Under the optimal reaction conditions, secondary alcohols, cyclic alcohols and benzyl alcohol were prevailingly oxidized to their corresponding ketones or aldehydes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号