首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We introduce new potential type operators Jab = (E+(-D)b/2)-a/bJ^{\alpha}_{\beta} = (E+(-\Delta)^{\beta/2})^{-\alpha/\beta}, (α > 0, β > 0), and bi-parametric scale of function spaces Hab, p(\mathbbRn)H^{\alpha}_{\beta , p}({\mathbb{R}}^n) associated with Jαβ. These potentials generalize the classical Bessel potentials (for β = 2), and Flett potentials (for β = 1). A characterization of the spaces Hab, p(\mathbbRn)H^{\alpha}_{\beta, p}({\mathbb{R}}^n) is given with the aid of a special wavelet–like transform associated with a β-semigroup, which generalizes the well-known Gauss-Weierstrass semigroup (for β = 2) and the Poisson one (for β = 1).  相似文献   

2.
In this work, we consider the Jacobi-Dunkl operator Λ α,β , a 3 b 3 \frac-12\alpha\geq\beta\geq\frac{-1}{2} , a 1 \frac-12\alpha\neq\frac{-1}{2} , on ℝ. The eigenfunction Yla,b\Psi_{\lambda}^{\alpha,\beta} of this operator permits to define the Jacobi-Dunkl transform. The main idea in this paper is to introduce and study the Jacobi-Dunkl transform and the Jacobi-Dunkl convolution product on new spaces of distributions  相似文献   

3.
In Finsler geometry, minimal surfaces with respect to the Busemann-Hausdorff measure and the Holmes-Thompson measure are called BH-minimal and HT-minimal surfaces, respectively. In this paper, we give the explicit expressions of BH-minimal and HT-minimal rotational hypersurfaces generated by plane curves rotating around the axis in the direction of [(b)\tilde]\sharp{\tilde{\beta}^{\sharp}} in Minkowski (α, β)-space (\mathbbVn+1,[(Fb)\tilde]){(\mathbb{V}^{n+1},\tilde{F_b})} , where \mathbbVn+1{\mathbb{V}^{n+1}} is an (n+1)-dimensional real vector space, [(Fb)\tilde]=[(a)\tilde]f([(b)\tilde]/[(a)\tilde]), [(a)\tilde]{\tilde{F_b}=\tilde{\alpha}\phi(\tilde{\beta}/\tilde{\alpha}), \tilde{\alpha}} is the Euclidean metric, [(b)\tilde]{\tilde{\beta}} is a one form of constant length b:=||[(b)\tilde]||[(a)\tilde], [(b)\tilde]\sharp{b:=\|\tilde{\beta}\|_{\tilde{\alpha}}, \tilde{\beta}^{\sharp}} is the dual vector of [(b)\tilde]{\tilde{\beta}} with respect to [(a)\tilde]{\tilde{\alpha}} . As an application, we first give the explicit expressions of the forward complete BH-minimal rotational surfaces generated around the axis in the direction of [(b)\tilde]\sharp{\tilde{\beta}^{\sharp}} in Minkowski Randers 3-space (\mathbbV3,[(a)\tilde]+[(b)\tilde]){(\mathbb{V}^{3},\tilde{\alpha}+\tilde{\beta})} .  相似文献   

4.
In this communication, we first compare z α and t ν,α , the upper 100α% points of a standard normal and a Student’s t ν distributions respectively. We begin with a proof of a well-known result, namely, for every fixed 0 < a < \frac120<\alpha <\frac{1}{2} and the degree of freedom ν, one has t ν,α  > z α . Next, Theorem 3.1 provides a new and explicit expression b ν ( > 1) such that for every fixed 0 < a < \frac120<\alpha < \frac{1}{2} and ν, we can conclude t ν,α  > b ν z α . This is clearly a significant improvement over the result that is customarily quoted in nearly every textbook and elsewhere. A proof of Theorem 3.1 is surprisingly simple and pretty. We also extend Theorem 3.1 in the case of a non-central Student’s t distribution (Section 3.3). In the context of Stein’s (Ann Math Stat 16:243–258, 1945; Econometrica 17:77–78, 1949) 100(1 − α)% fixed-width confidence intervals for the mean of a normal distribution having an unknown variance, we have examined the oversampling rate on an average for a variety of choices of m, the pilot sample size. We ran simulations to investigate this issue. We have found that the oversampling rates are approximated well by tn,a/22za/2-2t_{\nu ,\alpha /2}^{2}z_{\alpha /2}^{-2} for small and moderate values of m( ≤ 50) all across Table 2 where ν = m − 1. However, when m is chosen large (≥ 100), we find from Table 3 that the oversampling rates are not approximated by tn,a/22za/2-2t_{\nu ,\alpha /2}^{2}z_{\alpha /2}^{-2} very well anymore in some cases, and in those cases the oversampling rates either exceed the new lower bound of tn,a/22za/2-2,t_{\nu ,\alpha /2}^{2}z_{\alpha /2}^{-2}, namely bn2,b_{\nu }^{2}, or comes incredibly close to bn2b_{\nu }^{2} where ν = m − 1. That is, the new lower bound for a percentile of a Student’s t distribution may play an important role in order to come up with diagnostics in our understanding of simulated output under Stein’s fixed-width confidence interval method.  相似文献   

5.
Let a\alpha and b\beta be bounded measurable functions on the unit circle T. The singular integral operator Sa, bS_{\alpha ,\,\beta } is defined by Sa, b f = aPf + bQf(f ? L2 (T))S_{\alpha ,\,\beta } f = \alpha Pf + \beta Qf(f \in L^2 (T)) where P is an analytic projection and Q is a co-analytic projection. In the previous paper, the norm of Sa, bS_{\alpha ,\,\beta } was calculated in general, using a,b\alpha ,\beta and a[`(b)] + H\alpha \bar {\beta } + H^\infty where HH^\infty is a Hardy space in L (T).L^\infty (T). In this paper, the essential norm ||Sa, b ||e\Vert S_{\alpha ,\,\beta } \Vert _e of Sa, bS_{\alpha ,\,\beta } is calculated in general, using a[`(b)] + H + C\alpha \bar {\beta } + H^\infty + C where C is a set of all continuous functions on T. Hence if a[`(b)]\alpha \bar {\beta } is in H + CH^\infty + C then ||Sa, b ||e = max(||a|| , ||b|| ).\Vert S_{\alpha ,\,\beta } \Vert _e = \max (\Vert \alpha \Vert _\infty , \Vert \beta \Vert _\infty ). This gives a known result when a, b\alpha , \beta are in C.  相似文献   

6.
We generalize a well known convexity property of the multiplicative potential function. We prove that, given any convex function g : \mathbbRm ? [0, ¥]{g : \mathbb{R}^m \rightarrow [{0}, {\infty}]}, the function ${({\rm \bf x},{\rm \bf y})\mapsto g({\rm \bf x})^{1+\alpha}{\bf y}^{-{\bf \beta}}, {\bf y}>{\bf 0}}${({\rm \bf x},{\rm \bf y})\mapsto g({\rm \bf x})^{1+\alpha}{\bf y}^{-{\bf \beta}}, {\bf y}>{\bf 0}}, is convex if β ≥ 0 and α ≥ β 1 + ··· + β n . We also provide further generalization to functions of the form (x,y1, . . . , yn)? g(x)1+af1(y1)-b1 ···fn(yn)-bn{({\rm \bf x},{\rm \bf y}_1, . . . , {y_n})\mapsto g({\rm \bf x})^{1+\alpha}f_1({\rm \bf y}_1)^{-\beta_1} \cdot \cdot \cdot f_n({\rm \bf y}_n)^{-\beta_n} } with the f k concave, positively homogeneous and nonnegative on their domains.  相似文献   

7.
The Heisenberg–Pauli–Weyl (HPW) uncertainty inequality on \mathbbRn{\mathbb{R}^n} says that
|| f ||2Ca,b|| |x|a f||2\fracba+b|| (-D)b/2f||2\fracaa+b.\| f \|_2 \leq C_{\alpha,\beta}\| |x|^\alpha f\|_2^\frac{\beta}{\alpha+\beta}\| (-\Delta)^{\beta/2}f\|_2^\frac{\alpha}{\alpha+\beta}.  相似文献   

8.
The real-valued Lambert W-functions considered here are w 0(y) and w  − 1(y), solutions of we w  = y, − 1/e < y < 0, with values respectively in ( − 1,0) and ( − ∞ , − 1). A study is made of the numerical evaluation to high precision of these functions and of the integrals ò1 [-w0(-xe-x)]a x-bx\int_1^\infty [-w_0(-xe^{-x})]^\alpha x^{-\beta}\d x, α > 0, β ∈ ℝ, and ò01 [-w-1(-x e-x)]a x-bx\int_0^1 [-w_{-1}(-x e^{-x})]^\alpha x^{-\beta}\d x, α > − 1, β < 1. For the latter we use known integral representations and their evaluation by nonstandard Gaussian quadrature, if α ≠ β, and explicit formulae involving the trigamma function, if α = β.  相似文献   

9.
Let ${s,\,\tau\in\mathbb{R}}Let s, t ? \mathbbR{s,\,\tau\in\mathbb{R}} and q ? (0,¥]{q\in(0,\infty]} . We introduce Besov-type spaces [(B)\dot]s, tpq(\mathbbRn){{{{\dot B}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}}} for p ? (0, ¥]{p\in(0,\,\infty]} and Triebel–Lizorkin-type spaces [(F)\dot]s, tpq(\mathbbRn) for p ? (0, ¥){{{{\dot F}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}}\,{\rm for}\, p\in(0,\,\infty)} , which unify and generalize the Besov spaces, Triebel–Lizorkin spaces and Q spaces. We then establish the j{\varphi} -transform characterization of these new spaces in the sense of Frazier and Jawerth. Using the j{\varphi} -transform characterization of [(B)\dot]s, tpq(\mathbbRn) and [(F)\dot]s, tpq(\mathbbRn){{{{\dot B}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}\, {\rm and}\, {{\dot F}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}}} , we obtain their embedding and lifting properties; moreover, for appropriate τ, we also establish the smooth atomic and molecular decomposition characterizations of [(B)\dot]s, tpq(\mathbbRn) and [(F)\dot]s, tpq(\mathbbRn){{{{\dot B}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}\,{\rm and}\, {{\dot F}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}}} . For s ? \mathbbR{s\in\mathbb{R}} , p ? (1, ¥), q ? [1, ¥){p\in(1,\,\infty), q\in[1,\,\infty)} and t ? [0, \frac1(max{pq})¢]{\tau\in[0,\,\frac{1}{(\max\{p,\,q\})'}]} , via the Hausdorff capacity, we introduce certain Hardy–Hausdorff spaces B[(H)\dot]s, tpq(\mathbbRn){{{{B\dot{H}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}}}} and prove that the dual space of B[(H)\dot]s, tpq(\mathbbRn){{{{B\dot{H}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}}}} is just [(B)\dot]-s, tp¢, q(\mathbbRn){\dot{B}^{-s,\,\tau}_{p',\,q'}(\mathbb{R}^{n})} , where t′ denotes the conjugate index of t ? (1,¥){t\in (1,\infty)} .  相似文献   

10.
A question of Yves Meyer motivated the research concerning “time” subordinations of real functions. Denote by B1a{\mathcal {B}}_{1}^{\alpha} the metric space of functions with Lipschitz constant 1 defined on [0,1], equipped with the complete metric defined via the supremum norm. Given a function g ? B1ag\in {\mathcal {B}}_{1}^{\alpha} one obtains a time subordination of g simply by considering the composite function Z=gf, where f∈ℳ:={f:f(0)=0, f(1)=1 and f is a continuous nondecreasing function on [0,1]}. The metric space Ea=M×B1a\mathcal {E}^{\alpha}=\mathcal {M}\times {\mathcal {B}}_{1}^{\alpha} equipped with the product supremum metric is a complete metric space. In this paper for all α∈[0,1) multifractal properties of gf are investigated for a generic (typical) element (f,g)∈ℰ α . In particular we determine the generic H?lder singularity spectrum of gf.  相似文献   

11.
We construct a fundamental solution of the equation ${\partial_t - \Delta^{\alpha/2} - b(\cdot, \cdot) \cdot\nabla_{x} = 0}We construct a fundamental solution of the equation ?t - Da/2 - b(·, ·) ·?x = 0{\partial_t - \Delta^{\alpha/2} - b(\cdot, \cdot) \cdot\nabla_{x} = 0} for a ? (1, 2){\alpha \in (1, 2)} and b satisfying a certain integral space-time condition. We also show it has α-stable upper and lower bounds.  相似文献   

12.
We prove the existence of a global heat flow u : Ω ×  \mathbbR+ ? \mathbbRN {\mathbb{R}^{+}} \to {\mathbb{R}^{N}}, N > 1, satisfying a Signorini type boundary condition u(∂Ω ×  \mathbbR+ {\mathbb{R}^{+}}) ⊂  \mathbbRn {\mathbb{R}^{n}}), n \geqslant 2 n \geqslant 2 , and \mathbbRN {\mathbb{R}^{N}}) with boundary [`(W)] \bar{\Omega } such that φ(∂Ω) ⊂ \mathbbRN {\mathbb{R}^{N}} is given by a smooth noncompact hypersurface S. Bibliography: 30 titles.  相似文献   

13.
For open discrete mappings f:D\{ b } ? \mathbbR3 f:D\backslash \left\{ b \right\} \to {\mathbb{R}^3} of a domain D ì \mathbbR3 D \subset {\mathbb{R}^3} satisfying relatively general geometric conditions in D \ {b} and having an essential singularity at a point b ? \mathbbR3 b \in {\mathbb{R}^3} , we prove the following statement: Let a point y 0 belong to [`(\mathbbR3)] \f( D\{ b } ) \overline {{\mathbb{R}^3}} \backslash f\left( {D\backslash \left\{ b \right\}} \right) and let the inner dilatation K I (x, f) and outer dilatation K O (x, f) of the mapping f at the point x satisfy certain conditions. Let B f denote the set of branch points of the mapping f. Then, for an arbitrary neighborhood V of the point y 0, the set Vf(B f ) cannot be contained in a set A such that g(A) = I, where I = { t ? \mathbbR:| t | < 1 } I = \left\{ {t \in \mathbb{R}:\left| t \right| < 1} \right\} and g:U ? \mathbbRn g:U \to {\mathbb{R}^n} is a quasiconformal mapping of a domain U ì \mathbbRn U \subset {\mathbb{R}^n} such that A ⊂ U.  相似文献   

14.
This paper resolves a number of problems in the perturbation theory of linear operators, linked with the 45-year-old conjecure of M. G. Kreĭn. In particular, we prove that every Lipschitz function is operator-Lipschitz in the Schatten–von Neumann ideals S α , 1 < α < ∞. Alternatively, for every 1 < α < ∞, there is a constant c α > 0 such that
|| f(a) - f(b) ||a \leqslant ca|| f ||\textLip 1|| a - b ||a, {\left\| {f(a) - f(b)} \right\|_{\alpha }} \leqslant {c_{\alpha }}{\left\| f \right\|_{{{\text{Lip}}\,{1}}}}{\left\| {a - b} \right\|_{\alpha }},  相似文献   

15.
We consider Dirichlet series zg,a(s)=?n=1 g(na) e-ln s{\zeta_{g,\alpha}(s)=\sum_{n=1}^\infty g(n\alpha) e^{-\lambda_n s}} for fixed irrational α and periodic functions g. We demonstrate that for Diophantine α and smooth g, the line Re(s) = 0 is a natural boundary in the Taylor series case λ n  = n, so that the unit circle is the maximal domain of holomorphy for the almost periodic Taylor series ?n=1 g(na) zn{\sum_{n=1}^{\infty} g(n\alpha) z^n}. We prove that a Dirichlet series zg,a(s) = ?n=1 g(n a)/ns{\zeta_{g,\alpha}(s) = \sum_{n=1}^{\infty} g(n \alpha)/n^s} has an abscissa of convergence σ 0 = 0 if g is odd and real analytic and α is Diophantine. We show that if g is odd and has bounded variation and α is of bounded Diophantine type r, the abscissa of convergence σ 0 satisfies σ 0 ≤ 1 − 1/r. Using a polylogarithm expansion, we prove that if g is odd and real analytic and α is Diophantine, then the Dirichlet series ζ g,α (s) has an analytic continuation to the entire complex plane.  相似文献   

16.
Let Lf(x)=-\frac1w?i,j ?i(ai,j(·)?jf)(x)+V(x)f(x){\mathcal{L}f(x)=-\frac{1}{\omega}\sum_{i,j} \partial_i(a_{i,j}(\cdot)\partial_jf)(x)+V(x)f(x)} with the non-negative potential V belonging to reverse H?lder class with respect to the measure ω(x)dx, where ω(x) satisfies the A 2 condition of Muckenhoupt and a i,j (x) is a real symmetric matrix satisfying l-1w(x)|x|2 £ ?ni,j=1ai,j(x)xixj £ lw(x)|x|2.{\lambda^{-1}\omega(x)|\xi|^2\le \sum^n_{i,j=1}a_{i,j}(x)\xi_i\xi_j\le\lambda\omega(x)|\xi|^2. } We obtain some estimates for VaL-a{V^{\alpha}\mathcal{L}^{-\alpha}} on the weighted L p spaces and we study the weighted L p boundedness of the commutator [b, Va L-a]{[b, V^{\alpha} \mathcal{L}^{-\alpha}]} when b ? BMOw{b\in BMO_\omega} and 0 < α ≤ 1.  相似文献   

17.
Let \mathbbD \mathbb{D} n denote the unit polydisk and let B n denote the unit ball in \mathbbC \mathbb{C} n , n ≥1. We study weighted composition operators on the α-Bloch spaces Ba {\mathcal{B}^\alpha } ( \mathbbD \mathbb{D} n ), α > 1. We also study Cesàro type operators on the α-Bloch spaces Ba {\mathcal{B}^\alpha } (B n ), α > 0. Bibliography: 15 titles.  相似文献   

18.
Motivated by work on positive cubature formulae over the spherical surface, Gautschi and Leopardi conjectured that the inequality holds for α,β > − 1 and n ≥ 1, θ ∈ (0, π), where are the Jacobi polynomials of degree n and parameters (α, β). We settle this conjecture in the special cases where .   相似文献   

19.
For arbitrary [α, β] ⊂ R and p > 0, we solve the extremal problem
òab | x(k)(t) |qdt ? sup,     q 3 p,    k = 0    \textor    q 3 1,    k 3 1, \int\limits_\alpha^\beta {{{\left| {{x^{(k)}}(t)} \right|}^q}dt \to \sup, \quad q \geq p,\quad k = 0\quad {\text{or}}\quad q \geq 1,\quad k \geq 1},  相似文献   

20.
We take up in this paper the existence of positive continuous solutions for some nonlinear boundary value problems with fractional differential equation based on the fractional Laplacian (-D|D)\fraca2{(-\Delta _{|D})^{\frac{\alpha }{2}}} associated to the subordinate killed Brownian motion process ZaD{Z_{\alpha }^{D}} in a bounded C 1,1 domain D. Our arguments are based on potential theory tools on ZaD{Z_{\alpha }^{D}} and properties of an appropriate Kato class of functions K α (D).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号