首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We construct a novel multi-step iterative method for solving systems of nonlinear equations by introducing a parameter θ to generalize the multi-step Newton method while keeping its order of convergence and computational cost. By an appropriate selection of θ, the new method can both have faster convergence and have larger radius of convergence. The new iterative method only requires one Jacobian inversion per iteration, and therefore, can be efficiently implemented using Krylov subspace methods. The new method can be used to solve nonlinear systems of partial differential equations, such as complex generalized Zakharov systems of partial differential equations, by transforming them into systems of nonlinear equations by discretizing approaches in both spatial and temporal independent variables such as, for instance, the Chebyshev pseudo-spectral discretizing method. Quite extensive tests show that the new method can have significantly faster convergence and significantly larger radius of convergence than the multi-step Newton method.  相似文献   

2.
The governing dynamics of fluid flow is stated as a system of partial differential equations referred to as the Navier-Stokes system. In industrial and scientific applications, fluid flow control becomes an optimization problem where the governing partial differential equations of the fluid flow are stated as constraints. When discretized, the optimal control of the Navier-Stokes equations leads to large sparse saddle point systems in two levels. In this paper, we consider distributed optimal control for the Stokes system and test the particular case when the arising linear system can be compressed after eliminating the control function. In that case, a system arises in a form which enables the application of an efficient block matrix preconditioner that previously has been applied to solve complex-valued systems in real arithmetic. Under certain conditions, the condition number of the so preconditioned matrix is bounded by 2. The numerical and computational efficiency of the method in terms of number of iterations and execution time is favorably compared with other published methods.  相似文献   

3.
We study nonstationary iterative methods for solving preconditioned systems arising from discretizations of the convection–diffusion equation. The preconditioners arise from Gauss–Seidel methods applied to the original system. It is shown that the performance of the iterative solvers is affected by the relationship of the ordering of the underlying grid and the direction of the fow associated with the differential operator. Specifically, only those orderings that follow the fow give fast iterative solvers. © 1997 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 13 :321–330  相似文献   

4.
In this paper, we generalize the complex shifted Laplacian preconditioner to the complex shifted Laplacian-PML preconditioner for the Helmholtz equation with perfectly matched layer (Helmholtz-PML equation). The Helmholtz-PML equation is discretized by an optimal 9-point difference scheme, and the preconditioned linear system is solved by the Krylov subspace method, especially by the biconjugate gradient stabilized method (Bi-CGSTAB). The spectral analysis of the linear system is given, and a new matrix-based interpolation operator is proposed for the multigrid method, which is used to approximately invert the preconditioner. The numerical experiments are presented to illustrate the efficiency of the preconditioned Bi-CGSTAB method with the multigrid based on the new interpolation operator, also, numerical results are given for comparing the performance of the new interpolation operator with that of classic bilinear interpolation operator and the one suggested in Erlangga et al. (2006) [10].  相似文献   

5.
We consider numerical methods for the incompressible Reynolds averaged Navier–Stokes equations discretized by finite difference techniques on non-staggered grids in body-fitted coordinates. A segregated approach is used to solve the pressure–velocity coupling problem. Several iterative pressure linear solvers including Krylov subspace and multigrid methods and their combination have been developed to compare the efficiency of each method and to design a robust solver. Three-dimensional numerical experiments carried out on scalar and vector machines and performed on different fluid flow problems show that a combination of multigrid and Krylov subspace methods is a robust and efficient pressure solver. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
The inverse-free preconditioned Krylov subspace method of Golub and Ye [G.H. Golub, Q. Ye, An inverse free preconditioned Krylov subspace method for symmetric generalized eigenvalue problems, SIAM J. Sci. Comp. 24 (2002) 312-334] is an efficient algorithm for computing a few extreme eigenvalues of the symmetric generalized eigenvalue problem. In this paper, we first present an analysis of the preconditioning strategy based on incomplete factorizations. We then extend the method by developing a block generalization for computing multiple or severely clustered eigenvalues and develop a robust black-box implementation. Numerical examples are given to illustrate the analysis and the efficiency of the block algorithm.  相似文献   

7.
jun-Feng Yin  Ken Hayami  Zhong-Zhi Bai 《PAMM》2007,7(1):2020151-2020152
We consider preconditioned Krylov subspace iteration methods, e.g., CG, LSQR and GMRES, for the solution of large sparse least-squares problems min ∥Axb2, with A ∈ R m×n, based on the Krylov subspaces Kk (BA, Br) and Kk (AB, r), respectively, where B ∈ R n×m is the preconditioning matrix. More concretely, we propose and implement a class of incomplete QR factorization preconditioners based on the Givens rotations and analyze in detail the efficiency and robustness of the correspondingly preconditioned Krylov subspace iteration methods. A number of numerical experiments are used to further examine their numerical behaviour. It is shown that for both overdetermined and underdetermined least-squares problems, the preconditioned GMRES methods are the best for large, sparse and ill-conditioned matrices in terms of both CPU time and iteration step. Also, comparisons with the diagonal scaling and the RIF preconditioners are given to show the superiority of the newly-proposed GMRES-type methods. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
We discuss a class of deflated block Krylov subspace methods for solving large scale matrix eigenvalue problems. The efficiency of an Arnoldi-type method is examined in computing partial or closely clustered eigenvalues of large matrices. As an improvement, we also propose a refined variant of the Arnoldi-type method. Comparisons show that the refined variant can further improve the Arnoldi-type method and both methods exhibit very regular convergence behavior.  相似文献   

9.
Preconditioned Krylov subspace (KSP) methods are widely used for solving large‐scale sparse linear systems arising from numerical solutions of partial differential equations (PDEs). These linear systems are often nonsymmetric due to the nature of the PDEs, boundary or jump conditions, or discretization methods. While implementations of preconditioned KSP methods are usually readily available, it is unclear to users which methods are the best for different classes of problems. In this work, we present a comparison of some KSP methods, including GMRES, TFQMR, BiCGSTAB, and QMRCGSTAB, coupled with three classes of preconditioners, namely, Gauss–Seidel, incomplete LU factorization (including ILUT, ILUTP, and multilevel ILU), and algebraic multigrid (including BoomerAMG and ML). Theoretically, we compare the mathematical formulations and operation counts of these methods. Empirically, we compare the convergence and serial performance for a range of benchmark problems from numerical PDEs in two and three dimensions with up to millions of unknowns and also assess the asymptotic complexity of the methods as the number of unknowns increases. Our results show that GMRES tends to deliver better performance when coupled with an effective multigrid preconditioner, but it is less competitive with an ineffective preconditioner due to restarts. BoomerAMG with a proper choice of coarsening and interpolation techniques typically converges faster than ML, but both may fail for ill‐conditioned or saddle‐point problems, whereas multilevel ILU tends to succeed. We also show that right preconditioning is more desirable. This study helps establish some practical guidelines for choosing preconditioned KSP methods and motivates the development of more effective preconditioners.  相似文献   

10.
In this paper, we introduce a generalized Krylov subspace based on a square matrix sequence {A j } and a vector sequence {u j }. Next we present a generalized Arnoldi procedure for generating an orthonormal basis of . By applying the projection and the refined technique, we derive a restarted generalized Arnoldi method and a restarted refined generalized Arnoldi method for solving a large-scale polynomial eigenvalue problem (PEP). These two methods are applied to solve the PEP directly. Hence they preserve essential structures and properties of the PEP. Furthermore, restarting reduces the storage requirements. Some theoretical results are presented. Numerical tests report the effectiveness of these methods. Yimin Wei is supported by the National Natural Science Foundation of China and Shanghai Education Committee.  相似文献   

11.
We are concerned with the numerical solution of partial differential equations (PDEs) in two spatial dimensions discretized via Hermite collocation. To efficiently solve the resulting systems of linear algebraic equations, we choose a Krylov subspace method. We implement two such methods: Bi‐CGSTAB [1] and GMRES [2]. In addition, we utilize two different preconditioners: one based on the Gauss–Seidel method with a block red‐black ordering (RBGS); the other based upon a block incomplete LU factorization (ILU). Our results suggest that, at least in the context of Hermite collocation, the RBGS preconditioner is superior to the ILU preconditioner and that the Bi‐CGSTAB method is superior to GMRES. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17:120–136, 2001  相似文献   

12.
In this paper we consider the problem of approximating the solution of infinite linear systems, finitely expressed by a sparse coefficient matrix. We analyse an algorithm based on Krylov subspace methods embedded in an adaptive enlargement scheme. The management of the algorithm is not trivial, due to the irregular convergence behaviour frequently displayed by Krylov subspace methods for nonsymmetric systems. Numerical experiments, carried out on several test problems, indicate that the more robust methods, such as GMRES and QMR, embedded in the adaptive enlargement scheme, exhibit good performances.  相似文献   

13.
For solving least squares problems, the CGLS method is a typical method in the point of view of iterative methods. When the least squares problems are ill-conditioned, the convergence behavior of the CGLS method will present a deteriorated result. We expect to select other iterative Krylov subspace methods to overcome the disadvantage of CGLS. Here the GMRES method is a suitable algorithm for the reason that it is derived from the minimal residual norm approach, which coincides with least squares problems. Ken Hayami proposed BAGMRES for solving least squares problems in [\emph{GMRES Methods for Least Squares Problems, SIAM J. Matrix Anal. Appl., 31(2010)}, pp.2400-2430]. The deflation and balancing preconditioners can optimize the convergence rate through modulating spectral distribution. Hence, in this paper we utilize preconditioned iterative Krylov subspace methods with deflation and balancing preconditioners in order to solve ill-conditioned least squares problems. Numerical experiments show that the methods proposed in this paper are better than the CGLS method.  相似文献   

14.
15.
Summary. In this work we calculate the eigenvalues obtained by preconditioning the discrete Helmholtz operator with Sommerfeld-like boundary conditions on a rectilinear domain, by a related operator with boundary conditions that permit the use of fast solvers. The main innovation is that the eigenvalues for two and three-dimensional domains can be calculated exactly by solving a set of one-dimensional eigenvalue problems. This permits analysis of quite large problems. For grids fine enough to resolve the solution for a given wave number, preconditioning using Neumann boundary conditions yields eigenvalues that are uniformly bounded, located in the first quadrant, and outside the unit circle. In contrast, Dirichlet boundary conditions yield eigenvalues that approach zero as the product of wave number with the mesh size is decreased. These eigenvalue properties yield the first insight into the behavior of iterative methods such as GMRES applied to these preconditioned problems. Received March 24, 1998 / Revised version received September 28, 1998  相似文献   

16.
Uncertainty quantification for linear inverse problems remains a challenging task, especially for problems with a very large number of unknown parameters (e.g., dynamic inverse problems) and for problems where computation of the square root and inverse of the prior covariance matrix are not feasible. This work exploits Krylov subspace methods to develop and analyze new techniques for large‐scale uncertainty quantification in inverse problems. In this work, we assume that generalized Golub‐Kahan‐based methods have been used to compute an estimate of the solution, and we describe efficient methods to explore the posterior distribution. In particular, we use the generalized Golub‐Kahan bidiagonalization to derive an approximation of the posterior covariance matrix, and we provide theoretical results that quantify the accuracy of the approximate posterior covariance matrix and of the resulting posterior distribution. Then, we describe efficient methods that use the approximation to compute measures of uncertainty, including the Kullback‐Liebler divergence. We present two methods that use the preconditioned Lanczos algorithm to efficiently generate samples from the posterior distribution. Numerical examples from dynamic photoacoustic tomography demonstrate the effectiveness of the described approaches.  相似文献   

17.
We consider solving eigenvalue problems or model reduction problems for a quadratic matrix polynomial 2 −  − B with large and sparse A and B. We propose new Arnoldi and Lanczos type processes which operate on the same space as A and B live and construct projections of A and B to produce a quadratic matrix polynomial with the coefficient matrices of much smaller size, which is used to approximate the original problem. We shall apply the new processes to solve eigenvalue problems and model reductions of a second order linear input-output system and discuss convergence properties. Our new processes are also extendable to cover a general matrix polynomial of any degree.  相似文献   

18.
We consider numerical solution methods for the incompressible Navier-Stokes equations discretized by a finite volume method on staggered grids in general coordinates. We use Krylov subspace and multigrid methods as well as their combinations. Numerical experiments are carried out on a scalar and a vector computer. Robustness and efficiency of these methods are studied. It appears that good methods result from suitable combinations of GCR and multigrid methods.  相似文献   

19.
ADI preconditioned Krylov methods for large Lyapunov matrix equations   总被引:1,自引:0,他引:1  
In the present paper, we propose preconditioned Krylov methods for solving large Lyapunov matrix equations AX+XAT+BBT=0. Such problems appear in control theory, model reduction, circuit simulation and others. Using the Alternating Direction Implicit (ADI) iteration method, we transform the original Lyapunov equation to an equivalent symmetric Stein equation depending on some ADI parameters. We then define the Smith and the low rank ADI preconditioners. To solve the obtained Stein matrix equation, we apply the global Arnoldi method and get low rank approximate solutions. We give some theoretical results and report numerical tests to show the effectiveness of the proposed approaches.  相似文献   

20.
James V. Lambers 《PAMM》2007,7(1):2020143-2020144
This paper reviews the main properties, and most recent developments, of Krylov subspace spectral (KSS) methods for time-dependent variable-coefficient PDE. These methods use techniques developed by Golub and Meurant for approximating elements of functions of matrices by Gaussian quadrature in the spectral domain in order to achieve high-order accuracy in time and stability characteristic of implicit time-stepping schemes, even though KSS methods themselves are explicit. In fact, for certain problems, 1-node KSS methods are unconditionally stable. Furthermore, these methods are equivalent to high-order operator splittings, thus offering another perspective for further analysis and enhancement. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号