首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new polyanionic cathode material, Li3V2(PO4)3·LiMn0.33Fe0.67PO4/C for lithium-ion batteries, was synthesized using a sol-gel method and with N,N-dimethyl formamide as a dispersion agent. The analysis of electron transmission spectroscopy and X-ray diffraction revealed that the composite contained two phases. The material has high crystallinity with a grain size of 20–50 nm. The valence states of Mn, V, and Fe in the composite were analyzed by X-ray photoelectron spectroscopy. The electrochemical kinetics in Li3V2(PO4)3 is effectively enhanced by the incorporation of LiMnPO4 and LiFePO4, via structure modification and reduced Li diffusion length. The Li3V2(PO4)3·LiMn0.33Fe0.67PO4/C materials displayed high rate capacity and steady cycle performance with discharge capacity remained 148 mAh g?1 after 50 cycles at the rate of 0.2C. In particular, the composite exhibited excellent reversible capacities, with the values of 157, 134, 120, 102, and 94 mAh g?1 at charge/discharge 0.2, 0.5, 1, 2, and 5C rates, respectively.  相似文献   

2.
In this work series of LiNiyCo1−yPO4 (y=0, 0.2, 0.4, 0.6, 0.8 and 1) phospho olivines were synthesized by solution co-precipitation technique and characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) and impedance spectroscopic analysis. The XRD patterns of LiNiyCo1−yPO4 (y=0.2, 0.4, 0.6 and 0.8) revealed that they are essentially single phase and have an Olivine-type XRD patterns similar to those of their parent compounds LiCoPO4 and LiNiPO4. An increase in wave number for most of the dominant infrared bands in PO4 vibrational region for the substitution of Co by Ni in LiCoPO4 indicated the strengthening of both the P-O and Li/Ni-O bonds. Paper presented at the 2nd International Conference on Ionic Devices, Anna University, Chennai, India, Nov. 28–30, 2003.  相似文献   

3.
The NASICON series, with formula Bax/2Li1-xTi2(PO4)3 (0.4 ≤ x ≤ 1), has been prepared by solid-state reaction and characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), Raman, nuclear magnetic resonance (NMR) and impedance spectroscopy (IS). XRD patterns of samples indicated the formation of single phases with rhombohedral structure (space group R-3c). The Rietveld analysis of XRD patterns was performed to deduce location of Li and Ba ions. FTIR, Raman, and NMR techniques showed the only presence of isolated PO4 groups in analyzed phosphates. 31P MAS-NMR spectra were used to investigate Li and Ba distribution and 7Li MAS-NMR spectra to discriminated Li ions with different mobility in conduction paths. A maximum total conductivity of 2.5 × 10?7 S cm?1 and a minimum activation energy of 0.47 eV were obtained at room temperature for Ba0.3Li0.4Ti2(PO4)3 (x = 0.6).  相似文献   

4.
The refraction R of the diglycine nitrate (DGN) crystal, (NH2CH2COOH)2 · HNO3, in the para-and ferroelectric phases has been calculated in the model of noninteracting diatomic chemical bonds of the elementary unit cell of the crystal on the basis of the longitudinal and transversal polarizabilities of these bonds. The calculated magnitudes of the principal refractive indices n p , n m , and n g and the orientations of the optical indicatrix of the crystal agree satisfactorily with experimentally observed values. Introducing the coefficient of Lorenz-Lorentz interaction x into the corresponding formula permits better agreement of the calculated and experimental refractive indices of DGN crystal to be obtained. The temperature changes of these x coefficients upon the ferroelectric phase transition in the DGN crystal have been analyzed.  相似文献   

5.
The results of experimental investigation of the chemical phase composition, crystal structure, and magnetic properties of the manganite La0.70Sr0.30MnO3?γ (0 ≤ γ ≤ 0.25) with perovskite structure depending on the concentration of oxygen vacancies are presented. It is found that the mean grain size of the stoichiometric solid solution of La0.70Sr0.30MnO3 amounts approximately to 10 μm, while the grain size for anion-deficient solid solutions of La0.70Sr0.30MnO3?γ is approximately 5 μm. It is found that samples with 0 ≤ γ ≤ 0.13 have a rhombohedral unit cell (with space group \(R\bar 3c\), Z = 2), while samples with γ ≥ 0.20 have a tetragonal unit cell (space group I4/mcm, Z = 2). It is proved experimentally that the magnetic phase state of the manganite La0.70Sr0.30MnO3?γ changes upon a decrease in the oxygen content. It is shown that anion-deficient solid solutions of La0.70Sr0.30MnO3?γ experience a number of successive magnetic phase transformations in the ground state from a ferromagnet (0 ≤ γ ≤ 0.05) to a charge-disordered antiferromagnet (γ = 0.25) via an inhomogeneous magnetic state similar to a cluster spin glass (0.13 ≤ γ ≤ 0.20). The mean size of ferromagnetic clusters (r ≈ 50 nm) in the spin glass state is estimated. It is shown that oxygen vacancies make a substantial contribution to the formation of magnetic properties of manganites. The generalized magnetic characteristics are presented in the form of concentration dependences of the spontaneous magnetic moment, coercive force, and the critical temperature of the magnetic transition. The most probable mechanism of formation of the magnetic phase state in Sr-substituted anion-deficient manganites is considered. It is assumed that in the absence of orbital ordering, a decrease in the magnetic ion coordination number leads to sign reversal in indirect superexchange interactions Mn3+-O-Mn3+.  相似文献   

6.
It is shown that nitrogen-laser excited (2CaO · m(Al2O3) · SiO2): Eu photoluminescent phosphors obtained by direct solid-state synthesis at 1350°C emit white, green, and yellow lights when Al2O3 content m in the system decreases from 0.40 to 0.05. The coordinates of these colors correspond to the coordinates of light warning systems according to International Commission on Illumination (CIE) and are close to the coordinates of primary colors in the EBU and NTSC TV standards.  相似文献   

7.
The EPR of Mn ions in the (La1?yPry)0.7Ca0.3MnO3 system has been studied within a broad range of temperatures (4<T<600 K) and Pr concentrations (0≤y≤1), as well as under isotope substitution of 18O for 16O. All compositions were shown to undergo transitions to a magnetically ordered state with decreasing temperature. Magnetic phase diagrams were constructed for systems with different oxygen isotopes. The diagrams include paramagnetic, ferromagnetic, and antiferromagnetic regions. In the paramagnetic region, at temperatures not too close to the phase transition points, the Mn ion linewidth ΔH pp (T) is related to the magnetic susceptibility χ(T) through the relation ΔH pp (T) = [χ0/χ(T)]ΔH pp (∞) + ΔH0, where ΔH pp (∞) is the width of the exchange-narrowed line in the high-temperature approximation, χ0 ∝ 1/T is the susceptibility of noninteracting ions, and ΔH0 is the residual width originating from the sample porosity and resonance-field scatter in unoriented grains of a powder sample. An analysis of the data on ΔH pp (∞), ΔH0, and χ(T) made it possible to estimate the symmetric and antisymmetric exchange interaction of Mn ions and of the noncubic crystal-field component of the oxygen ions. These parameters were found to be independent of the oxygen isotope species to within experimental error.  相似文献   

8.
Composite structures consisting of (001)-oriented SrTiO3 (STO)/La0.7Sr0.3MnO3 (LSMO) films of 30 nm thickness, grown on an (001) Pb(Mg1/3Nb2/3)TiO3– 28 mol.% PbTiO3 piezoelectric relaxor-ferroelectric single-crystalline wafer were investigated by means of Wide-Angle X-ray Diffraction (WAXRD) in situ under influence of a d.c. electric field with strength E up to ±18 kV/cm. The WAXRD measurements of the films and substrate reflection profiles resulted in a determination of the strain s in the films and the substrate separately. The strained state of the STO/LSMO films is effectively controlled by a huge converse piezoelectric effect of the PMN-PT substrate. The coefficients of coupling between electric-field-induced out-of-plane strain in the films and in the substrate for the composite system STO/LSMO/PMN-PT are obtained.  相似文献   

9.
A new model is proposed for a local transition in a Jahn-Teller impurity center in a crystal with a ferroelastic (ferroelectric) phase transition. This model is based on direct interaction of the order parameter of the phase transition in the matrix with the Jahn-Teller impurity degrees of freedom. It is shown that, under these conditions, the order parameter field can induce lifting of degeneracy of the electronic states active in the Jahn-Teller effect, which is accompanied by a transition from the Jahn-Teller effect to the pseudo-Jahn-Teller effect with its subsequent suppression. As a result, a decrease in temperature gives rise to a structural local transition in the region of the low-symmetry ferroelastic (ferroelectric) matrix phase from the many-well local adiabatic to a single-well potential. The model proposed allows interpretation of experimental data obtained in an EPR study of the molecular impurity ion MnO 4 2? in the K3Na(CrO4)2 ferroelastic.  相似文献   

10.
Single-phase solid solutions of Sm2 ? x Ce x CuO4 + δ (0.05 ≤ x ≤ 0.20) with tetragonal structure are synthesized using acetate combustion followed by sintering at 1373 K for 10 h. X-ray powder diffraction and transmission electron microscopy studies confirmed the formation of solid solution in a single phase. Maximum conductivity (σ = 96.0 ± 0.5 S cm?1 at 973 K) giving composition Sm1.90Ce0.10CuO4 offers the minimum activation energy (E a = 0.32 ± 0.004 eV) among all prepared compositions. Lowest cathode polarization resistance (R p = 3.92 ± 0.07 Ω cm2 at 973 K) and activation energy (E a = 1.12 ± 0.03 eV) values across the measured temperature range are obtained for Sm1.90Ce0.10CuO4. The impedance data fitted well to the Gerischer model indicates that a chemical-electrochemical-chemical-type reaction occurred at the mixed electronic-ionic conducting cathode.  相似文献   

11.
Composite solid electrolytes in the system (1???x)Li2CO3xAl2O3, with x?=?0.0–0.5 (mole), were synthesized by a sol–gel method. The synthesis carried out at low temperature resulted in voluminous and fluffy products. The obtained materials were characterized by X-ray diffraction, differential scanning calorimetry, scanning electron microscopy/energy-dispersive X-ray, Fourier transform infrared spectroscopy and AC impedance spectroscopy. Structural analysis of the samples showed an amorphous feature of Li2CO3 and traces of α-LiAlO2, γ-LiAlO2 and LiAl5O8. The prepared composite samples possess high ionic conductivities at 130–180 °C on account of the presence of lithium aluminates as well as the formation of a high concentration of an amorphous phase of Li2CO3 via this sol–gel preparative technique.  相似文献   

12.
The reactive uptake of NO3 radicals on the surface of wetted individual X salts and of wetted X-NaCl salts (X = MgCl2 · 6H2O and MgBr2 · 6H2O) at [H2O] = 2 × 1012−2 × 1015 cm−3 and NO3 (4.8 × 1012 cm−3) was studied using a reactor with a movable insert covered with a salt coating in combination with a mass spectrometer for monitoring the initial reactant and products. The probabilities of NO3 uptake γ on X-NaCl binary salts as functions of the content of doping salt were determined. A parametric approximation of the experimental data was proposed, which makes it possible to quantitatively predict the extent of surface enrichment of a wetted binary salt coating in doping salt and its dependence on the humidity and the content of this salt in the binary mixture. It was established that the relative surface density σX of X doping salt depends on its mole fraction μX in the X-NaCl binary salt as σX = aμX (a = 2.2 for MgBr2 and 13.1 for MgCl2) over the entire humidity range covered. The contributions of the X salts to the overall uptake of NO3 at NO3 concentration typical of the tropospheric conditions ([NO3] ∼ 107 cm−3 and relative humidities of RH ≤ 20%) were estimated.  相似文献   

13.
The structural and the thermodynamic properties of potassium nitrate KNO3 and its composites with nanosized aluminum oxide Al2O3 have been studied by differential scanning calorimetry. It has been found that an amorphous phase forms in composites (1–x)KNO3–xAl2O3. The thermal effect corresponding to this phase has been observed at 316°C. It has been found that the phase transition heats of potassium nitrate decreased as the aluminum oxide fraction increased.  相似文献   

14.
The formation of an intermediate phase in SrFe12O19/La0.9Ca0.1MnO3 composites was demonstrated for the first time using only Mössbauer spectroscopy. The SrFe12O19/La0.9Ca0.1MnO3 composite was prepared by the two-stage (sol–gel and hydrothermal) synthesis with varying initial conditions. The X-ray diffraction studies showed that the composite consisted of two phases: well-formed structures of manganite La0.9Ca0.1MnO3 and hexagonal ferrite SrFe12O19. It was found that nanocrystalline La0.9Ca0.1MnO3 particles with size d ? 150 nm formed in the composites at the surface of plate-like SrFe12O19 crystallites. The Mössbauer studies showed that the composite contained additional (intermediate) phase La0.9Ca0.1Mn(Fe)O3 that formed at the interface between SrFe12O19 and La0.9Ca0.1MnO3 phases. The intermediate phase concentration increased with the molar content of La0.9Ca0.1MnO3; in this case, the fraction of the surface of SrFe12O19 crystallites coated with La0.9Ca0.1MnO3 increased, which led to the increase in the total area of the interface surface and the intermediate phase concentration.  相似文献   

15.
The complex of Tb(TPTZ)Cl3·3H2O was synthesized by adding the ethyl alcohol solution of TbCl3 (1 mmol) to the solution of 2,4,6-tris-(2-pyridyl)-s-triazine(TPTZ,1 mmol) with constant stirring. The solution which had been filtered was kept at the room temperature for 4 weeks, and then a kind of transparent crystal was formed. Besides, nine kinds of solid complexes in the different molar proportion of terbium to gadolinium had been synthesized by adopting the similar method mentioned above. It was inferred from the elemental analysis and rare earth complexometry that the composition of these complexes is (TbxGdy)(TPTZ)Cl3·3H2O (x : y = 0.9 : 0.1, 0.8 : 0.2, 0.7 : 0.3, 0.6 : 0.4, 0.5 : 0.5, 0.4 : 0.6, 0.3 : 0.7, 0.2 : 0.8, 0.1 : 0.9). The absorption spectra and photoluminescence of the complexes were determined in dimethylsulfoxide (DMF), which showed that the excitation of the complexes is mostly ligand based. The triplet state energy level of TPTZ was measured, indicating that the lowest excitation state energy level of Tb(III) and the triplet state energy level of TPTZ match well each other. The fluorescent data indicated that the fluorescent emission intensity of Tb3+ ions would be enhanced in the complexes after terbium was doped with Gd3+ ion. When x : y was 0.5 : 0.5, the fluorescent emission intensity was the largest. The result obtained by testing the X-ray diffraction of the monocrystal revealed that the molecular formula of the mono-crystal complex is [Tb(TPTZ)(H2O)6]Cl3·3H2O. The number of metal ion coordinates is nine, and the tridentate TPTZ and six water molecules are bonded with terbium respectively. Besides, it also revealed that the monocrystal belongs to the monoclinic system, and space group Cc with the following unit cell parameters is a = 1.4785 (3) nm, b = 1.0547 (2) nm, c = 1.7385 (4) nm, β = 94.42 (3)°, V = 2.7028 (9) nm3 and Z = 4.  相似文献   

16.
Magnetic properties of the organic conductor κ-(BETS)2Mn[N(CN)2]3 above and below the temperature of the metal-insulator transition that occurs at T MI ≈ 25 K are studied by 1H NMR. The proton spectrum is shown to be determined by the static dipolar fields from Mn2+ localized moments, while the 1H spin-lattice relaxation is dominated by fluctuating fields from Mn2+ electrons. The NMR data, both static (the spectra) and dynamic (the spin-lattice relaxation), indicate the freezing of Mn2+ moments into a short-range or an incommensurate long-range antiferromagnetic order below T MI.  相似文献   

17.
The temperature dependences of the quenching rate constants of the states N2 (${\rm C} \ {^{3}{ \rm \Pi }_{u}}${\rm C} \ {^{3}{ \rm \Pi }_{u}} v=0,1) by N2 (X) and of the state N2 (${\rm C} \ {^{3}{ \rm \Pi }_{u}} \ v^{\prime}=0${\rm C} \ {^{3}{ \rm \Pi }_{u}} \ v^{\prime}=0) by O2 (X) are studied. Time-resolved light emission from the gas was analyzed in the temperature range from 300 K to 210 K keeping the gas at constant density. In case of quenching by N2 (X), the quenching rate constant for the vibrational level v= 0 increases by (13 ±3)% with gas cooling whereas the quenching rate constant for v= 1 decreases by (5.0 ±2.5)% in this temperature range. For quenching by O2 (X), the quenching rate constant decreases by (3 ±2)% with gas cooling. The temperature variation of the N2 (C 3Πu v=0) emission intensity for pure nitrogen and dry air are calculated using the obtained quenching rate constants and is compared with the experimental data available in the literature.  相似文献   

18.
The influence of the replacement of hydrogen with deuterium in molecules of water of crystallization in the structure of the (CuSO4)(en) · 2H2O and (CuSO4)(en)·2D2O organometallic compound molecules on exchange interaction between copper ions was studied. The X-ray structural data and the data on angular anisotropy of the effective g-factor of Cu2+ ions in both compounds show that distortions of the initial structure caused by deuteration are minimum. A comparative analysis of the width of the exchange coupled EPR lines of the two compounds is indicative of a decrease in the exchange parameter in the deuterated sample, which substantiates the participation of H-bonds in exchange interactions in the systems studied.  相似文献   

19.
The atomic structure of crystals of the complex [Eu(NO3)23hmpa] NO3·HQuin , (hmpa – hexamethylphosphortriamide, HQuin – quinaldic acid) characterized by intensive luminescence and triboluminescence has been determined by the X-ray method. The noncentro-symmetric crystals of the compound are rhombic : a = 16.8193(3), b = 12.2877(2), c = 27.6516(5) Å, пр. гр. Pca2(1), Z = 4, ρ calc. . = 1.427 g/сm3. The crystals have a structure of the insular type which is presented by the isolated complex molecules, outer-sphere NO3 ? – groups, and neutral molecules of quinaldic acid. Some structural aspects of formation of the luminescent and triboluminescent properties of the compound were discussed: the role of break planes in the crystal destruction was revealed.  相似文献   

20.
The mass distributions of the species generated by laser ablation from a La0.6Ca0.4MnO3 target using laser irradiation wavelengths of 193 nm, 266 nm and 308 nm have been investigated with and without a synchronized gas pulse of N2O. The kinetic energies of the species are measured using an electrostatic deflection energy analyzer, while the mass distributions of the species were analyzed with a quadrupole mass filter. In vacuum (pressure 10−7 mbar), the ablation plume consists of metal atoms and ions such as La, Ca, Mn, O, LaO, as well as multiatomic species, e.g. LaMnO+. The LaO+ diatomic species are by far the most intense diatomic species in the plume, while CaO and MnO are only detected in small amounts. The interaction of a reactive N2O gas pulse with the ablation plume leads to an increase in plume reactivity, which is desired when thin manganite films are grown, in order to incorporate the necessary amount of oxygen into the film. The N2O gas pulse appears to have a significant influence on the oxidation of the Mn species in the plume, and on the creation of negative ions, such as LaO,O and O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号