首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We present a simple method for determining the exact noise power spectra and related statistical properties for linear chemical reaction networks. The method is applied to reaction networks which are representative of biochemical processes such as gene expression. We find, for example, that a post-translational modification reaction can reduce the noise associated with gene expression. Our results also indicate how to coarse grain networks by the elimination of fast reactions. In this context we have discovered a breakdown of the sum rule which relates the noise power spectrum to the total noise. The breakdown can be quantified by a sum rule deficit, which is found to be universal, and can be attributed to the high-frequency noise in the fast reactions.  相似文献   

3.
It is commonly believed that, whenever timescale separation holds, the predictions of reduced chemical master equations obtained using the stochastic quasi-steady-state approximation are in very good agreement with the predictions of the full master equations. We use the linear noise approximation to obtain a simple formula for the relative error between the predictions of the two master equations for the Michaelis-Menten reaction with substrate input. The reduced approach is predicted to overestimate the variance of the substrate concentration fluctuations by as much as 30%. The theoretical results are validated by stochastic simulations using experimental parameter values for enzymes involved in proteolysis, gluconeogenesis, and fermentation.  相似文献   

4.
The time evolution of species concentrations in biochemical reaction networks is often modeled using the stochastic simulation algorithm (SSA) [Gillespie, J. Phys. Chem. 81, 2340 (1977)]. The computational cost of the original SSA scaled linearly with the number of reactions in the network. Gibson and Bruck developed a logarithmic scaling version of the SSA which uses a priority queue or binary tree for more efficient reaction selection [Gibson and Bruck, J. Phys. Chem. A 104, 1876 (2000)]. More generally, this problem is one of dynamic discrete random variate generation which finds many uses in kinetic Monte Carlo and discrete event simulation. We present here a constant-time algorithm, whose cost is independent of the number of reactions, enabled by a slightly more complex underlying data structure. While applicable to kinetic Monte Carlo simulations in general, we describe the algorithm in the context of biochemical simulations and demonstrate its competitive performance on small- and medium-size networks, as well as its superior constant-time performance on very large networks, which are becoming necessary to represent the increasing complexity of biochemical data for pathways that mediate cell function.  相似文献   

5.
It is well known that oscillations in models of biochemical reaction networks can arise as a result of a single negative cycle. On the other hand, methods for finding general network conditions for potential oscillations in large biochemical reaction networks containing many cycles are not well developed. A biochemical reaction network with any number of species is represented by a simple digraph and is modeled by an ordinary differential equation (ODE) system with non-mass action kinetics. The obtained graph-theoretic condition generalizes the negative cycle condition for oscillations in ODE models to the existence of a pair of subnetworks, where each subnetwork contains an even number of positive cycles. The technique is illustrated with a model of genetic regulation.  相似文献   

6.
We have developed a new numerical technique, called Green's-function reaction dynamics (GFRD), that makes it possible to simulate biochemical networks at the particle level and in both time and space. In this scheme, a maximum time step is chosen such that only single particles or pairs of particles have to be considered. For these particles, the Smoluchowski equation can be solved analytically using Green's functions. The main idea of GFRD is to exploit the exact solution of the Smoluchoswki equation to set up an event-driven algorithm, which combines in one step the propagation of the particles in space with the reactions between them. The event-driven nature allows GFRD to make large jumps in time and space when the particles are far apart from each other. Here, we apply the technique to a simple model of gene expression. The simulations reveal that spatial fluctuations can be a major source of noise in biochemical networks. The calculations also show that GFRD is highly efficient. Under biologically relevant conditions, GFRD is up to five orders of magnitude faster than conventional particle-based techniques for simulating biochemical networks in time and space. GFRD is not limited to biochemical networks. It can also be applied to a large number of other reaction-diffusion problems.  相似文献   

7.
Motivated by fundamental problems in chemistry and biology we study cluster graphs arising from a set of initial states S í \mathbbZn+{S\subseteq\mathbb{Z}^n_+} and a set of transitions/reactions M í \mathbbZn+×\mathbbZn+{M\subseteq\mathbb{Z}^n_+\times\mathbb{Z}^n_+}. The clusters are formed out of states that can be mutually transformed into each other by a sequence of reversible transitions. We provide a solution method from computational commutative algebra that allows for deciding whether two given states belong to the same cluster as well as for the reconstruction of the full cluster graph. Using the cluster graph approach we provide solutions to two fundamental questions: (1) Deciding whether two states are connected, e.g., if the initial state can be turned into the final state by a sequence of transition and (2) listing concisely all reactions processes that can accomplish that. As a computational example, we apply the framework to the permanganate/oxalic acid reaction.  相似文献   

8.
Stochastic chemical kinetics more accurately describes the dynamics of "small" chemical systems, such as biological cells. Many real systems contain dynamical stiffness, which causes the exact stochastic simulation algorithm or other kinetic Monte Carlo methods to spend the majority of their time executing frequently occurring reaction events. Previous methods have successfully applied a type of probabilistic steady-state approximation by deriving an evolution equation, such as the chemical master equation, for the relaxed fast dynamics and using the solution of that equation to determine the slow dynamics. However, because the solution of the chemical master equation is limited to small, carefully selected, or linear reaction networks, an alternate equation-free method would be highly useful. We present a probabilistic steady-state approximation that separates the time scales of an arbitrary reaction network, detects the convergence of a marginal distribution to a quasi-steady-state, directly samples the underlying distribution, and uses those samples to accurately predict the state of the system, including the effects of the slow dynamics, at future times. The numerical method produces an accurate solution of both the fast and slow reaction dynamics while, for stiff systems, reducing the computational time by orders of magnitude. The developed theory makes no approximations on the shape or form of the underlying steady-state distribution and only assumes that it is ergodic. We demonstrate the accuracy and efficiency of the method using multiple interesting examples, including a highly nonlinear protein-protein interaction network. The developed theory may be applied to any type of kinetic Monte Carlo simulation to more efficiently simulate dynamically stiff systems, including existing exact, approximate, or hybrid stochastic simulation techniques.  相似文献   

9.
10.
We consider the dynamics of chemical reaction networks under the assumption of mass-action kinetics. We show that there exist reaction networks for which the reaction rate constants are not uniquely identifiable, even if we are given complete information on the dynamics of concentrations for all chemical species of . Also, we show that there exist reaction networks such that their dynamics are identical under appropriate choices of reaction rate constants, and present theorems that characterize the properties of , , that make this possible. We use these facts to show how we can determine dynamical properties of some chemical networks by analyzing other chemical networks.  相似文献   

11.
Chemical reaction systems are dynamical systems that arise in chemical engineering and systems biology. In this work, we consider the question of whether the minimal (in a precise sense) multistationary chemical reaction networks, which we propose to call ‘atoms of multistationarity,’ characterize the entire set of multistationary networks. Our main result states that the answer to this question is ‘yes’ in the context of fully open continuous-flow stirred-tank reactors (CFSTRs), which are networks in which all chemical species take part in the inflow and outflow. In order to prove this result, we show that if a subnetwork admits multiple steady states, then these steady states can be lifted to a larger network, provided that the two networks share the same stoichiometric subspace. We also prove an analogous result when a smaller network is obtained from a larger network by ‘removing species.’ Our results provide the mathematical foundation for a technique used by Siegal- Gaskins et al. of establishing bistability by way of ‘network ancestry.’ Additionally, our work provides sufficient conditions for establishing multistationarity by way of atoms and moreover reduces the problem of classifying multistationary CFSTRs to that of cataloging atoms of multistationarity. As an application, we enumerate and classify all 386 bimolecular and reversible two-reaction networks. Of these, exactly 35 admit multiple positive steady states. Moreover, each admits a unique minimal multistationary subnetwork, and these subnetworks form a poset (with respect to the relation of ‘removing species’) which has 11 minimal elements (the atoms of multistationarity).  相似文献   

12.
Variability and fluctuations among genetically identical cells under uniform experimental conditions stem from the stochastic nature of biochemical reactions. Understanding network function for endogenous biological systems or designing robust synthetic genetic circuits requires accounting for and analyzing this variability. Stochasticity in biological networks is usually represented using a continuous-time discrete-state Markov formalism, where the chemical master equation (CME) and its kinetic Monte Carlo equivalent, the stochastic simulation algorithm (SSA), are used. These two representations are computationally intractable for many realistic biological problems. Fitting parameters in the context of these stochastic models is particularly challenging and has not been accomplished for any but very simple systems. In this work, we propose that moment equations derived from the CME, when treated appropriately in terms of higher order moment contributions, represent a computationally efficient framework for estimating the kinetic rate constants of stochastic network models and subsequent analysis of their dynamics. To do so, we present a practical data-derived moment closure method for these equations. In contrast to previous work, this method does not rely on any assumptions about the shape of the stochastic distributions or a functional relationship among their moments. We use this method to analyze a stochastic model of a biological oscillator and demonstrate its accuracy through excellent agreement with CME/SSA calculations. By coupling this moment-closure method with a parameter search procedure, we further demonstrate how a model's kinetic parameters can be iteratively determined in order to fit measured distribution data.  相似文献   

13.
Since inherent randomness in chemically reacting systems is evident, stochastic modeling and simulation are exceedingly important for investigating complex biological networks. Within the most common stochastic approach a network is modeled by a continuous-time Markov chain governed by the chemical master equation. We show how the continuous-time Markov chain can be converted to a stochastically identical discrete-time Markov chain and obtain a discrete-time version of the chemical master equation. Simulating the discrete-time Markov chain is equivalent to the Gillespie algorithm but requires less effort in that it eliminates the generation of exponential random variables. Thus, exactness as possessed by the Gillespie algorithm is preserved while the simulation can be performed more efficiently.  相似文献   

14.

Background  

It is becoming increasingly accepted that a shift is needed from the traditional target-based approach of drug development towards an integrated perspective of drug action in biochemical systems. To make this change possible, the interaction networks connecting drug targets to all components of biological systems must be identified and characterized.  相似文献   

15.
In this paper we continue the program started in Hwang and Velázquez (J Math Chem, to appear). We describe some chemical systems exhibiting bistable behavior with reaction constants of order one, but where bistability is due to the presence of a large number of chemical species or a large number of molecules of some of the species. We derive generalizations of the classical Kramers’ formula that gives the switching times for some particular systems exhibiting a large number of species.  相似文献   

16.
Under suitable assumptions, the dynamic behaviour of a chemical reaction network is governed by an autonomous set of polynomial ordinary differential equations over continuous variables representing the concentrations of the reactant species. It is known that two networks may possess the same governing mass-action dynamics despite disparate network structure. To date, however, there has only been limited work exploiting this phenomenon even for the cases where one network possesses known dynamics while the other does not. In this paper, we bring these known results into a broader unified theory which we call conjugate chemical reaction network theory. We present a theorem which gives conditions under which two networks with different governing mass-action dynamics may exhibit the same qualitative dynamics and use it to extend the scope of the well-known theory of weakly reversible systems.  相似文献   

17.
As the smallest unit of life, cells attract interest due to their structural complexity and functional reliability. Protocells assembled by inanimate components are created as an artificial entity to mimic the structure and some essential properties of a natural cell, and artificial reaction networks are used to program the functions of protocells. Although the bottom-up construction of a protocell that can be considered truly ‘alive’ is still an ambitious goal, these man-made constructs with a certain degree of ‘liveness’ can offer effective tools to understand fundamental processes of cellular life, and have paved the new way for bionic applications. In this review, we highlight both the milestones and recent progress of protocells programmed by artificial reaction networks, including genetic circuits, enzyme-assisted non-genetic circuits, prebiotic mimicking reaction networks, and DNA dynamic circuits. Challenges and opportunities have also been discussed.

In this review, the milestones and recent progress of protocells programmed by various types of artificial reaction networks are highlighted.  相似文献   

18.
Most differential equations found in chemical reaction networks (CRNs) have the form:
\fracdxdt = f(x) = Sv(x),\frac{{\rm d}x}{{\rm d}t}= f(x)= Sv(x),  相似文献   

19.
20.
We address the problem of eliminating fast reaction kinetics in stochastic biochemical systems by employing a quasiequilibrium approximation. We build on two previous methodologies developed by [Haseltine and Rawlings, J. Chem. Phys. 117, 6959 (2002)] and by [Rao and Arkin, J. Chem. Phys. 118, 4999 (2003)]. By following Haseltine and Rawlings, we use the numbers of occurrences of the underlying reactions to characterize the state of a biochemical system. We consider systems that can be effectively partitioned into two distinct subsystems, one that comprises "slow" reactions and one that comprises "fast" reactions. We show that when the probabilities of occurrence of the slow reactions depend at most linearly on the states of the fast reactions, we can effectively eliminate the fast reactions by modifying the probabilities of occurrence of the slow reactions. This modification requires computation of the mean states of the fast reactions, conditioned on the states of the slow reactions. By assuming that within consecutive occurrences of slow reactions, the fast reactions rapidly reach equilibrium, we show that the conditional state means of the fast reactions satisfy a system of at most quadratic equations, subject to linear inequality constraints. We present three examples which allow analytical calculations that clearly illustrate the mathematical steps underlying the proposed approximation and demonstrate the accuracy and effectiveness of our method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号