首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xylanase from Bacillus pumilus strain MK001 was immobilized on different matrices following varied immobilization methods. Entrapment using gelatin (GE) (40.0%), physical adsorption on chitin (CH) (35.0%), ionic binding with Q-sepharose (Q-S) (45.0%), and covalent binding with HP-20 beads (42.0%) showed the maximum xylanase immobilization efficiency. The optimum pH of immobilized xylanase shifted up to 1.0 unit (pH 7.0) as compared to free enzyme (pH 6.0). The immobilized xylanase exhibited higher pH stability (up to 28.0%) in the alkaline pH range (7.0–10.0) as compared to free enzyme. Optimum temperature of immobilized xylanase was observed to be 8 °C higher (68.0 °C) than free enzyme (60.0 °C). The free xylanase retained 50.0% activity, whereas xylanase immobilized on HP-20, Q-S, CH, and GE retained 68.0, 64.0, 58.0, and 57.0% residual activity, respectively, after 3 h of incubation at 80.0 °C. The immobilized xylanase registered marginal increase and decrease in K m and V max values, respectively, as compared to free enzyme. The immobilized xylanase retained up to 70.0% of its initial hydrolysis activity after seven enzyme reaction cycles. The immobilized xylanase was found to produce higher levels of high-quality xylo-oligosaccharides from birchwood xylan, indicating its potential in the nutraceutical industry.  相似文献   

2.
A highly thermostable alkaline xylanase was purified to homogeneity from culture supernatant of Bacillus sp. JB 99 using DEAE-Sepharose and Sephadex G-100 gel filtration with 25.7-fold increase in activity and 43.5% recovery. The molecular weight of the purified xylanase was found to be 20 kDA by SDS-PAGE and zymogram analysis. The enzyme was optimally active at 70 °C, pH 8.0 and stable over pH range of 6.0–10.0.The relative activity at 9.0 and 10.0 were 90% and 85% of that of pH 8.0, respectively. The enzyme showed high thermal stability at 60 °C with 95% of its activity after 5 h. The K m and V max of enzyme for oat spelt xylan were 4.8 mg/ml and 218.6 μM min−1 mg−1, respectively. Analysis of N-terminal amino acid sequence revealed that the xylanase belongs to glycosyl hydrolase family 11 from thermoalkalophilic Bacillus sp. with basic pI. Substrate specificity showed a high activity on xylan-containing substrate and cellulase-free nature. The hydrolyzed product pattern of oat spelt xylan on thin-layer chromatography suggested xylanase as an endoxylanase. Due to these properties, xylanase from Bacillus sp. JB 99 was found to be highly compatible for paper and pulp industry.  相似文献   

3.
A psychrotrophic fungus identified as Trichoderma sp. SC9 produced 36.7 U/ml of xylanase when grown on a medium containing corncob xylan at 20 °C for 6 days. The xylanase was purified 37-fold with a recovery yield of 8.2%. The purified xylanase appeared as a single protein band on SDS-PAGE with a molecular mass of approximately 20.5 kDa. The enzyme had an optimal pH of 6.0, and was stable over pH 3.5–9.0. The optimal temperature of the xylanase was 42.5 °C and it was stable up to 35 °C at pH 6.0 for 30 min. The xylanase was thermolabile with a half-life of 23.9 min at 45 °C. The apparent K m values of the xylanase for birchwood, beechwood, and oat-spelt xylans were found to be 3, 2.1, and 16 mg/ml respectively. The xylanase hydrolyzed beechwood xylan and birchwood xylan to yield mainly xylobiose as end products. The enzyme-hydrolysed xylotriose, xylotetraose, and xylopentose to produce xylobiose, but it hardly hydrolysed xylobiose. A xylanase gene (xynA) with an open reading frame of 669 nucleotide base pairs (bp), encoding 222 amino acids, from the strain was cloned and sequenced. The deduced amino acid sequence of XynA showed 85% homology with Xyn2 from a mesophilic strain of Trichoderma viride.  相似文献   

4.
An extracellular thermostable xylanase from a newly isolated thermophilic Actinomadura sp. strain Cpt20 was purified and characterized. Based on matrix-assisted laser desorption–ionization time-of-flight mass spectrometry analysis, the purified enzyme is a monomer with a molecular mass of 20,110.13 Da. The 19 residue N-terminal sequence of the enzyme showed 84% homology with those of actinomycete endoxylanases. The optimum pH and temperature values for xylanase activity were pH 10 and 80 °C, respectively. This xylanase was stable within a pH range of 5–10 and up to a temperature of 90 °C. It showed high thermostability at 60 °C for 5 days and half-life times at 90 °C and 100 °C were 2 and 1 h, respectively. The xylanase was specific for xylans, showing higher specific activity on soluble oat-spelt xylan followed by beechwood xylan. This enzyme obeyed the Michaelis–Menten kinetics, with the K m and k cat values being 1.55 mg soluble oat-spelt xylan/ml and 388 min−1, respectively. While the xylanase from Actinomadura sp. Cpt20 was activated by Mn2+, Ca2+, and Cu2+, it was, strongly inhibited by Hg2+, Zn2+, and Ba2+. These properties make this enzyme a potential candidate for future use in biotechnological applications particularly in the pulp and paper industry.  相似文献   

5.
Aspergillus niger NRC 107 xylanase and β-xylosidase were immobilized on various carriers by different methods of immobilization, including physical adsorption, covalant binding, ionic binding, and entrapment. The immobilized enzymes were prepared by physical adsorption on tannin-chitosan, ionic binding onto Dowex-50W, covalent binding on chitosan beads through glutaraldehyde, and entrapment in polyacrylamide had the highest activities. In most cases, the optimum pH of the immobilized enzymes were shifted to lower than those of free enzymes. The optimum reaction temperature of immobilized xylanase was shifted from 50°C to 52.5–65°C, whereas that of immobilized β-xylosidase was shifted from 45°C to 50–60°C. TheK m values of immobilized enzymes were higher than those of native enzymes. The operational stability of the immobilized enzymes was evaluated in continuous operation in packed-bead column-type reactors. The enzymes covalently bounded to chitosan showed the highest operational stability. However, the enzymes immobilized by physical adsorption or by ionic binding showed a low operational stability. The enzymes entrapped in polyacrylamide exhibited lower activity, but better operational stability.  相似文献   

6.
A recombinant esterase from Lactobacillus plantarum was immobilized on hydrophobic support polypropylene Accurel MP1000 by adsorption. Adsorption efficiency was 83%, and the immobilized protein was 12.4 mg/g of support. Esterase activity was determined using p-nitrophenyl butyrate as substrate, and highest activities were observed at 50 °C for immobilized enzyme and 30 °C for free enzyme extract. Concerning thermal stability, after enzyme incubation at 80 °C for 30 min, immobilized and free enzyme retained 91% and 56% of initial activity, respectively. Immobilized enzyme presented lower V max and higher K m than free enzyme. Protein was not released from the support, and esterase activity increased after 3 cycles of reuse.  相似文献   

7.
Two xylanases from the crude culture filtrate of Penicillium sclerotiorum were purified to homogeneity by a rapid and efficient procedure, using ion-exchange and molecular exclusion chromatography. Molecular masses estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were 23.9 and 33.1 kDa for xylanase I and II, respectively. The native enzymes’ molecular masses of 23.8 and 30.8 kDa were estimated for xylanase I and II, respectively, by molecular exclusion chromatography. Both enzymes are glycoproteins with optimum temperature and pH of 50 °C and pH 2.5 for xylanase I and 55 °C and pH 4.5 for xylanase II. The reducing agents β-mercaptoethanol and dithio-treitol enhanced xylanase activities, while the ions Hg2+ and Cu2+ as well the detergent SDS were strong inhibitors of both enzymes, but xylanase II was stimulated when incubated with Mn2+. The K m value of xylanase I for birchwood xylan and for oat spelt xylan were 6.5 and 2.6 mg mL−1, respectively, whereas the K m values of xylanase II for these substrates were 26.61 and 23.45 mg mL−1. The hydrolysis of oat spelt xylan by xylanase I released xylobiose and larger xylooligosaccharides while xylooligosaccharides with a decreasing polymerization degree up to xylotriose were observed by the action of xylanase II. The present study is among the first works to examine and describe an extracellular, highly acidophilic xylanase, with an unusual optimum pH at 2.5. Previously, only one work described a xylanase with optimum pH 2.0. This novel xylanase showed interesting characteristics for biotechnological process such as feed and food industries.  相似文献   

8.
The search for an in expensive support has motivated our group to undertake this work dealing with the use of chitosan as matrix for immobilizing lipase. In addition to its low cost, chitosan has several advantages for use as a support, including its lack of toxicity and chemical reactivity, allowing easy fixation of enzymes. In this article, we describe the immobilization of Canada rugosa lipase onto porous chitosan beads for the enzymatic hydrolysis of oliveoil. The binding of the lipase onto the support was performed by physicalad sorption using hexane as the dispersion medium. A comparativestudy between free and immobilized lipase was conducted in terms of pH, temperature, and thermal stability. A slightly lower value for optimum pH (6.0) was found for the immobilized form in comparison with that attained for the soluble lipase (7.0). The optimum reaction temperature shifted from 37°C for the free lipase to 50°C for the chitosan lipase. The patterns of heat stability indicated that the immobilization process tends to stabilize the enzyme. The half-life of the soluble free lipase at 55°C was equal to 0.71 h (K d=0.98 h−1), whereas for the immobilized lipase it was 1.10 h (K d=0.63 h−1). Kinetics was tested at 37°C following the hydrolysis of olive oil and obeys the Michaelis-Menten type of rate equation. The K m was 0.15 mM and the V max was 51 μmol/(min·mg), which were lower than for free lipase, suggesting that the apparent affinity toward the substrate changes and that the activity of the immobilized lipase decreases during the course of immobilization.  相似文献   

9.

Enzymes are gradually increasingly preferred over chemical processes, but commercial enzyme applications remain limited due to their low stability and low product recovery, so the application of an immobilization technique is required for repeated use. The aims of this work were to produce stable enzyme complexes of cross-linked xylanase on magnetic chitosan, to describe some characteristics of these complexes, and to evaluate the thermal stability of the immobilized enzyme and its reusability. A xylanase was cross-linked to magnetite particles prepared by in situ co-precipitation of iron salts in a chitosan template. The effect of temperature, pH, kinetic parameters, and reusability on free and immobilized xylanase was evaluated. Magnetization, morphology, size, structural change, and thermal behavior of immobilized enzyme were described. 1.0?±?0.1 μg of xylanase was immobilized per milligram of superparamagnetic chitosan nanoparticles via covalent bonds formed with genipin. Immobilized xylanase showed thermal, pH, and catalytic velocity improvement compared to the free enzyme and can be reused three times. Heterogeneous aggregates of 254 nm were obtained after enzyme immobilization. The immobilization protocol used in this work was successful in retaining enzyme thermal stability and could be important in using natural compounds such as Fe3O4@Chitosan@Xylanase in the harsh temperature condition of relevant industries.

  相似文献   

10.
Novel drug‐loaded hydrogel beads for intestine‐targeted controlled release were developed by using pH‐ and temperature‐sensitive carboxymethyl chitosan‐graft‐poly(N,N‐diethylacrylamide) (CMCTS‐g‐PDEA) hydrogel as carriers and vitamin B2 (VB2) as a model drug. The hydrogel beads were prepared based on Ca2+ ionic crosslinking in acidic solution and formed dual crosslinked network structure. The structure of hydrogel and morphology of drug‐loaded beads were characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). The study about swelling characteristics of hydrogel beads indicated that the beads had obvious pH‐ and temperature‐sensitivity. In vitro release studies of drug‐loaded beads were carried out in pH 1.2 HCl buffer solution and pH 7.4 phosphate buffer solution at 37°C, respectively. The results indicated that the dual crosslinked method could effectively control the drug release rate under gastrointestinal tract (GIT) conditions, which was superior to traditional single crosslinked beads. In addition, the effects of grafting percentage, pH value, and temperature on the release behavior of the VB2 were investigated. The drug release mechanism of CMCTS‐g‐PDEA drug‐loaded beads was analyzed by Peppa's potential equation. According to this study, the dual crosslinked hydrogel beads based on CMCTS‐g‐PDEA could serve as suitable candidate for drug site‐specific carrier in intestine. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
An exoinulinase has been isolated, purified and characterised from a commercially available broth of Aspergillus ficuum. The enzyme was purified 4.2-fold in a 21% yield with a specific activity of 12,300 U mg−1(protein) after dialysis, ammonium sulphate fractionation and Sephacryl S-200 size exclusion and ion exchange chromatography. The molecular weight of this enzyme was estimated to be 63 kDa by SDS-PAGE. It exhibited a pH and temperature optima of 5.4 and 50 °C respectively and under such conditions the enzyme remained stable with 96% and 63.8% residual activity after incubation for 12 h and 72 h respectively. The respective K m and V max values were 4.75 mM and 833.3 μmol min−1 ml−1, respectively. Response surface methodological statistical analysis was evaluated for the maximal production of fructose from the hydrolysis of pure commercial chicory inulin. Incubation of the dialyzed crude exoinulinase (100 U/ml, 48 h, 50 °C, 150% inulin, pH 5.0) produced the highest amount of fructose (106.4 mg/ml) under static batch conditions. The purified exoinulinase was evaluated for fructose production and the highest amount (98 mg/ml) was produced after 12 h incubation at 50 °C, 150% inulin pH 5.0. The use of a crude exoinulinase preparation is economically desirable and the industrial production of fructose from inulin hydrolysis is biotechnologically feasible.  相似文献   

12.
Chitosan-coated attapulgite beads were prepared by coating chitosan on naturally and abundantly available attapulgite, and made into spherical beads to adsorb uranium from aqueous solutions. The beads were characterized by SEM, EDS and FT-IR. The characteristics of beads of adsorbing uranium(VI) from aqueous solutions were studied at different conditions of pH, initial uranium concentration, contact time, biomass dosage and temperature. The pseudo-second order rate equation was used to describe the kinetic data, and isotherm data were fitted to Langmuir and Freundlich adsorption models. Thermodynamic parameters (ΔG°, ΔH°, and ΔS°) of the biosorption were also calculated. Thermodynamic parameters of the CAAB, viz., ΔG°(308 K), ΔH°, and ΔS° were determined to be −21.59, 6.29l and 90.51 J/mol K, respectively. The experimental results demonstrate that the beads of chitosan coated onto attapulgite exhibit considerable potential for application in both adsorption and removal of uranium from aqueous solutions.  相似文献   

13.
A bacterial strain, Streptomyces sp. TN119, was isolated from the gut of Batocera horsfieldi larvae and showed xylanolytic activity. A degenerate primer set was designed based on the base usage of G and C in Actinobacteria xylanase-coding sequences belonging to the glycosyl hydrolases family 10 (GH 10), and used to clone the partial xylanase gene from Streptomyces sp. TN119. A modified thermal asymmetric interlaced (TAIL)-PCR specific for high-GC genes, named GC TAIL-PCR, was developed to obtain the full-length xylanase gene (xynA119; 1089 bp). Rich in GC content (67.8%), xynA119 encodes a new GH 10 xylanase (XynA119), which shares highest identity (48.8%) with an endo-1,4-β-xylanase from Cellulosimicrobium sp. HY-12. Recombinant XynA119 was expressed in Escherichia coli BL21 (DE3) and purified to electrophoretic homogeneity. The enzyme showed maximal activity at pH 6.5 and 60 °C, was stable at pH 4.0 to 10.0 and 50 °C, was resistant to most chemicals (except for Cu2+, Mn2+, Ag+, Hg2+ and SDS) and trypsin, and produced simple products. The specific activity, K m, V max, and k cat using oat-spelt xylan as substrate were 57.9 U mg−1, 1.0 mg ml−1, 74.8 μmol min−1 mg−1, and 49.2 s–1, respectively.  相似文献   

14.
A synthetic polymer, polyvinyl alcohol (PVA), a cheap and nontoxic synthetic polymer to organism, has been ascribed for biocatalyst immobilization. In this work PVA–alginate beads were developed with thermal, mechanical, and chemical stability to high temperatures (<80 °C). The combination of alginate and bead treatment with sodium sulfate not only prevented agglomeration but produced beads of high gel strength and conferred enzyme protection from inactivation by boric acid. Naringinase from Penicillium decumbens was immobilized in PVA (10%)–alginate beads with three different sizes (1–3 mm), at three different alginate concentrations (0.2–1.0%), and these features were investigated in terms of swelling ratio within the beads, enzyme activity, and immobilization yield during hydrolysis of naringin. The pH and temperature optimum were 4.0 and 70 °C for the PVA–alginate-immobilized naringinase. The highest naringinase activity yield in PVA (10%)–alginate (1%) beads of 2 mm was 80%, at pH 4.0 and 70 °C. The Michaelis constant (K Mapp) and the maximum reaction velocity (V maxapp) were evaluated for both free (K Mapp = 0.233 mM; V maxapp = 0.13 mM min−1) and immobilized naringinase (K Mapp = 0.349 mM; V maxapp = 0.08 mM min−1). The residual activity of the immobilized enzyme was followed in eight consecutive batch runs with a retention activity of 70%. After 6 weeks, upon storage in acetate buffer pH 4 at 4 °C, the immobilized biocatalyst retained 90% of the initial activity. These promising results are illustrative of the potential of this immobilization strategy for the system evaluated and suggest that its application may be effectively performed for the entrapment of other biocatalysts.  相似文献   

15.
Chitinase was purified from the culture medium of Bacillus licheniformis SK-1 by colloidal chitin affinity adsorption followed by diethylamino ethanol-cellulose column chromatography. The purified enzyme showed a single band on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The molecular size and pI of chitinase 72 (Chi72) were 72 kDa and 4.62 (Chi72) kDa, respectively. The purified chitinase revealed two activity optima at pH 6 and 8 when colloidal chitin was used as substrate. The enzyme exhibited activity in broad temperature range, from 40 to 70°C, with optimum at 55°C. It was stable for 2 h at temperatures below 60°C and stable over a broad pH range of 4.0–9.0 for 24 h. The apparent K m and V max of Chi72 for colloidal chitin were 0.23 mg ml−1 and 7.03 U/mg, respectively. The chitinase activity was high on colloidal chitin, regenerated chitin, partially N-acetylated chitin, and chitosan. N-bromosuccinamide completely inhibited the enzyme activity. This enzyme should be a good candidate for applications in the recycling of chitin waste.  相似文献   

16.
The aim of this work was to have cellulase activity and hemicellulase activity screenings of endophyte Acremonium species (Acremonium zeae EA0802 and Acremonium sp. EA0810). Both fungi were cultivated in submerged culture (SC) containing l-arabinose, d-xylose, oat spelt xylan, sugarcane bagasse, or corn straw as carbon source. In solid-state fermentation, it was tested as carbon source sugarcane bagasse or corn straw. The highest FPase, endoglucanase, and xylanase activities were produced by Acremonium sp. EA0810 cultivated in SC containing sugarcane bagasse as a carbon source. The highest β-glucosidase activity was produced by Acremonium sp. EA0810 cultivated in SC using d-xylose as carbon source. A. zeae EA0802 has highest α-arabinofuranosidase and α-galactosidase activities in SC using xylan as a carbon source. FPase, endoglucanase, β-glucosidase, and xylanase from Acremonium sp. EA0810 has optimum pH and temperatures of 6.0, 55 °C; 5.0, 70 °C; 4.5, 60 °C; and 6.5, 50 °C, respectively. α-Arabinofuranosidase and α-galactosidase from A. zeae EA0802 has optimum pH and temperatures of 5.0, 60 °C and 4.5, 45 °C, respectively. It was analyzed the application of Acremonium sp. EA0810 to hydrolyze sugarcane bagasse, and it was achieved 63% of conversion into reducing sugar and 42% of conversion into glucose.  相似文献   

17.
Lactose has been hydrolyzed using covalently immobilized β-galactosidase on thermally stable carrageenan coated with chitosan (hydrogel). The hydrogel’s mode of interaction was proven by Fourier transform infrared spectroscopy, differential scanning calorimetry (DSC), and Schiff’s base formation. The DSC thermogram proved the formation of a strong polyelectrolyte complex between carrageenan and chitosan followed by glutaraldehyde as they formed one single peak. The modification of carrageenan improved the gel’s thermal stability in solutions from 35 °C to 95 °C. The hydrogel has been proven to be efficient for β-galactosidase immobilization where 11 U/g wet gel was immobilized with 50% enzyme loading capacity. Activity and stability of free and immobilized β-galactosidase towards pH and temperature showed marked shifts in their optimum pH from 4.5–5 to 5–5.5 and temperature from 50 °C to 45–55 °C after immobilization, which reveals higher catalytic activity and reasonable stability at wider pHs and temperatures. The apparent K m of the immobilized enzyme increased from 13.2 to 125 mM, whereas the V max increased from 3.2 to 6.6 μmol/min compared to the free enzyme, respectively. The free and immobilized enzymes showed lactose conversion of 87% and 70% at 7 h, respectively. The operational stability showed 97% retention of the enzyme activity after 15 uses, which demonstrates that the covalently immobilized enzyme is unlikely to leach. The new carrier could be suitable for immobilization of other industrial enzymes.  相似文献   

18.
The gene xynB from Aspergillus sulphureus encoding the endo-β-1,4-xylanase was de novo synthesized by splicing overlap extension polymerase chain reaction according to Pichia pastoris protein’s codon bias. The synthetic DNA and wild-type DNA were placed under the control of a glyceraldehyde-3-phosphate dehydrogenase gene promoter (GAP) in the constitutive expression vector plasmid pGAPzαA and electrotransformed into the P. pastoris X-33 strain, respectively. The transformants screened by Zeocin were able to constitutively secrete the xylanase in YPD liquid medium. The maximum yield of the recombinant xylanase produced by the synthetic DNA was 105 U ml−1, which was about 5-fold higher than that by wild-type DNA under the flask culture at 28 °C for 3 days. The enzyme showed optimal activity at 50 °C and pH 5.0. The residual activity remained above 90% after the recombinant xylanase was pretreated in Na2HPO4–citric acid buffer (pH 2.4) for 2 h. The xylanase activity was significantly improved by Zn2+. These biochemical characteristics suggest that the recombinant xylanase has a prospective application in feed industry as an additive.  相似文献   

19.
A thermostable xylanase from a newly isolated thermophilic fungus Talaromyces thermophilus was purified and characterized. The enzyme was purified to homogeneity by ammonium sulfate precipitation, diethylaminoethyl cellulose anion exchange chromatography, P-100 gel filtration, and Mono Q chromatography with a 23-fold increase in specific activity and 17.5% recovery. The molecular weight of the xylanase was estimated to be 25kDa by sodium dodecyl sulfate–polyacrylamide gel electrophoresis and gel filtration. The enzyme was highly active over a wide range of pH from 4.0 to 10.0. The relative activities at pH5.0, 9.0, and 10.0 were about 80%, 85.0%, and 60% of that at pH7.5, respectively. The optimum temperature of the purified enzyme was 75°C. The enzyme showed high thermal stability at 50°C (7days) and the half-life of the xylanase at 100°C was 60min. The enzyme was free from cellulase activity. K m and V max values at 50°C of the purified enzyme for birchwood xylan were 22.51mg/ml and 1.235μmol min−1 mg−1, respectively. The enzyme was activated by Ag+, Co2+, and Cu2+; on the other hand, Hg2+, Ba2+, and Mn2+ inhibited the enzyme. The present study is among the first works to examine and describe a secreted, cellulase-free, and highly thermostable xylanase from the T. thermophilus fungus whose application as a pre-bleaching aid is of apparent importance for pulp and paper industries.  相似文献   

20.
Cellulase-free xylanase has potential for its application in the selective removal of hemicellulose from kraft pulp to give good strength to paper. In this study, a gene (xyn) encoding cellulase activity–free xylanase enzyme (Xyn) was isolated from Paenibacillus polymyxa PPL-3. The xyn gene encoded a protein of 221 amino acids, and the purified Xyn was about 22.5 kDa measured by sodium dodecyl sulfate–polyacrylamide gel electrophoresis. Moreover, the cellulase activity–free xylanase enzyme (Xyn) was displayed on the cell surface of Saccharomyces cerevisiae EBY100 using Aga2p as an anchor protein. Cell surface display of xylanase enzyme (Xyn) on S. cerevisiae EBY100 was confirmed by immunofluorescence microscopy. Optimum cell surface display of xylanase enzyme (Xyn) was observed at pH 7 and 40 °C. Therefore, cell surface–displayed xylanase enzyme (Xyn) can be used in the paper industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号