首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An analytical method based on the cloud point extraction combined with high performance liquid chromatography is used for the extraction, separation and determination of four explosives; octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazine (HMX), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), 2,4,6-trinitrotoluene (TNT) and pentaerythritol tetranitrate (PETN). These compounds are extracted by using of Triton X-114 and cetyl-trimethyl ammonium bromide (CTAB). After extraction, the samples were analyzed using a HPLC-UV system. The parameters affecting extraction efficiency (such as Triton X-114 and CTAB concentrations, amount of Na2SO4, temperature, incubation and centrifuge times) were evaluated and optimized. Under the optimum conditions, the preconcentration factor was 40 and the improvement factors of 34, 29, 61 and 42 with detection limits of 0.09, 0.14, 0.08 and 0.40 (μg L−1) were obtained for HMX, RDX, TNT and PETN, respectively. The proposed method was successfully applied to the determination of these compounds in water samples and showed recovery percentages of 97-102% with RSD values of 2.13-4.92%.  相似文献   

2.
A method for enhanced extraction of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) from environmental samples is developed with the assistance of sodium dodecyl sulphate (SDS) surfactant. In this study, the concentration of SDS surfactant and other analytical parameters are optimized on a high-performance liquid chromatography-UV system. An isocratic flow of 1.0 mL/min with mobile phase acetonitrile-water; 70:30 (v/v) at 230 nm wavelength on a reverse-phase amide column is used for baseline separation of explosives and making calibration curves. The amount of recovered explosives from spiked soil and water samples are calculated. The limits of detection obtained for HMX and RDX standards are 1.5 and 3.8 ppb (S/N=3), respectively, which are much better than obtained by the Environmental Protection Agency method 8330. The recoveries are found to be enhanced by 1.7 and 1.6-fold with SDS solution as compared to water for HMX and RDX, respectively, from soil samples.  相似文献   

3.
Walsh ME 《Talanta》2001,54(3):427-438
Hazardous waste site characterization, forensic investigations, and land mine detection are scenarios where soils may be collected and analyzed for traces of nitroaromatic, nitramine, and nitrate ester explosives. These thermally labile analytes are traditionally determined by high-performance liquid chromatography (HPLC); however, commercially available deactivated injection port liners and wide-bore capillary columns have made routine analysis by gas chromatography (GC) possible. The electron-withdrawing nitro group common to each of these explosives makes the electron capture detector (ECD) suitable for determination of low concentrations of explosives in soil, water, and air. GC-ECD and HPLC-UV concentration estimates of explosives residues in field-contaminated soils from hazardous waste sites were compared, and correlation (r>0.97) was excellent between the two methods of analysis for each of the compounds most frequently detected: 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), 2,4-dinitrotoluene (2,4-DNT), 1,3-dinitrobenzene (1,3-DNB), 1,3,5-trinitrobenzene (TNB), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). The analytes were extracted from soils with acetonitrile by 18 h of sonication in a cooled ultrasonic bath. Two soil-to-solvent ratios were evaluated: 2.00 g:10.00 ml and 25.0 g:50.0 ml. GC-ECD method detection limits were similar for the two soil-to-solvent ratios and were about 1 mug kg(-1) for the di- and trinitroaromatics, about 10 mug kg(-1) for the mono-nitroaromatics, 3 mug kg(-1) for RDX, 25 mug kg(-1) for HMX, and between 10 and 40 mug kg(-1) for the nitrate esters (nitroglycerine [NG] and pentaerythritol tetranitrate [PETN]). Spike recovery studies revealed artifacts introduced by the spiking procedure. Recoveries were low in some soils if the amount of soil spiked was large (25.0 g) compared to the volume of spike solution added (1.00 ml). Recoveries were close to 100% when 2.00-g soil samples were spiked with 1.00 ml of solution. Analytes most frequently found in soils collected near buried land mines were the microbial transformation products of TNT (2-amino-4,6-dinitrotoluene [2-Am-DNT] and 4-amino-2,6-dinitrotoluene [4-Am-DNT]), manufacturing impurities of TNT (2,4-DNT, 2,6-DNT, and 1,3-DNB), and TNT. The microbial reduction products of the isomers of DNT and of 1,3-DNB were also detected, but the ECD response to these compounds is poor.  相似文献   

4.
The cyclic nitramine explosives hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazine (HMX) were examined in field and microcosm soil samples to determine their patterns of degradation and environmental fates. A number of analytical techniques, including solid-phase microextraction with on-fiber derivatization, gas chromatography-mass spectrometry, gas chromatography with electron-capture detection, liquid chromatography-mass spectrometry, and micellar electrokinetic chromatography were required for the analyses. Two different classes of intermediates were detected, both of which lead ultimately to the formation of nitrous oxide (N2O) and carbon dioxide (CO2). The first class was identified as the nitroso derivatives formed by the sequential reduction of -NO2 functional groups. The second class of intermediates, which was favored at higher humidities and in the presence of anaerobic sludge amendments, consisted of ring cleavage products including bis-(hydroxymethyl)-nitramine and methylenedinitramine. Rye-grass (Lolium perenne) present in field samples was found to extract and accumulate HMX from soil without further degradation. In all cases (excepting the plant samples), the indigenous microbes or amended domestic anaerobic sludge consortia degraded the cyclic nitramine explosives eventually to produce N2O and CO2.  相似文献   

5.
A novel air-tight neutral desorption enclosure has been fabricated to noninvasively sample low picograms of explosives 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetraazocine (HMX), triacetone triperoxide (TATP), and nitroglycerin (NG) from human skin using a neutral nitrogen gas beam. Without further sample pretreatment, the explosive mixtures collected from the skin surface were directly transported by a nitrogen carrier gas over a 4-m distance for sensitive detection and rapid identification by extractive electrospray ionization tandem mass spectrometry.  相似文献   

6.
Explosives such as 2,4,6-trinitrotoluene (TNT), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) are widely distributed environmental contaminants. Complete chromatographic separation is necessary in order to accurately determine and quantify explosives and their degradation products in environmental samples and in (bio)transformation studies. The present study describes a RP-HPLC method with diode array detection using a LC-8 guard column, a Supelcosil LC-8 chromatographic column, and a gradient elution system. This gradient method is capable of baseline separating the most commonly observed explosives and TNT transformation metabolites including 2,4,6-triaminotoluene (TAT) in a single run. The TNT metabolites separated were 2-hydroxylamino-4,6-dinitrotoluene, 4-hydroxylamino-2,6-dinitrotoluene, 2,4-dihydroxylamino-6-nitrotoluene, 4,4',6,6'-tetranitro-2,2'-azoxytoluene, 2,2',6,6'-tetranitro-4,4'-azoxytoluene, 4,4',6,6'-tetranitro-2,2'-azotoluene, 2,2',6,6'-tetranitro-4,4'-azotoluene, 2-amino-4,6-dinitrotoluene, 4-amino-2, 6-dinitrotoluene, 2,6-diamino-4-nitrotoluene, 2,4-diamino-6-nitrotoluene, and TAT. The same gradient method at a different column temperature can also be used to baseline separate the explosives targeted in the Environmental Protection Agency (EPA) Method 8330 with approximately 22% reduction in total run time and 48% decrease in solvent consumption compared to previously published methods. Good separation was also obtained when all TNT metabolites and EPA Method 8330 compounds (a total of 23 compounds) were analyzed together; only 2,6-DANT and HMX co-eluted in this case. The influence of temperature (35-55 degrees C) and the use of an ion-pair reagent on the chromatographic resolution and retention were investigated. Temperature was identified as the key parameter for optimal baseline separation. Increased temperature resulted in shorter retention times and better peak resolution especially for the aminoaromatics investigated. The use of an ion-pair reagent (octanesulfonic acid) generally resulted in longer retention times for compounds containing amine functional groups, more baseline noise, and decreased peak resolution.  相似文献   

7.
Erçağ E  Uzer A  Eren S  Sağlam S  Filik H  Apak R 《Talanta》2011,85(4):2226-2232
Rapid and inexpensive sensing of explosive traces in soil and post-blast debris for environmental and criminological purposes with optical sensors has recently gained importance. The developed sensing method for nitro-aromatic and nitramine-based explosives is based on dropping an acetone solution of the analyte to an adsorbent surface, letting the solvent to dry, spraying an analytical reagent to produce a persistent spot, and indirectly measuring its reflectance by means of a miniature spectrometer. This method proved to be useful for on-site determination of nitro-aromatics (trinitrotoluene (TNT), 2,4,6-trinitrophenylmethylnitramine (tetryl) and dinitrotoluene (DNT)) and nitramines (1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)) pre-adsorbed on a poly vinyl chloride (PVC) surface, with the use of different spray reagents for each group of explosives producing different colors. The calibration equations of the tested compounds as reflectance vs. concentration showed excellent linearity (correlation coefficient: 0.998-0.999). The linear quantification interval in terms of absolute quantity of analyte was 0.1-0.5 μg. The developed method was successfully tested for the analysis of military explosives Comp B and Octol, and was validated against high performance liquid chromatography (HPLC). The reflectometric sensing method could also be used for qualitative identification of the nitrated explosives on a chromatographic paper. The reagent-impregnated paper could also serve as sensor, enabling semi-quantitative determinations of TNT and tetryl.  相似文献   

8.
An Agilent 3DCE capillary electrophoresis system using sulfobutylether-beta-cyclodextrin (SB-beta-CD)-ammonium acetate separation buffer pH 6.9 was coupled to a Bruker Esquire 3000+ quadrupole ion trap mass detector via a commercially available electrospray ionization interface with acetonitrile sheath flow. The CE-MS system was applied in negative ionization mode for the resolution and detection of nitroaromatic and polar cyclic or caged nitramine energetic materials including TNT [2,4,6-trinitrotoluene, formula mass (FW) 227.13], TNB (1,3,5-trinitrobenzene, FW 213.12), RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine, FW 222.26) HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine, FW 296.16), and CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane, FW 438.19). The CE-MS system conformed to the high-performance liquid chromatography with ultraviolet absorbance detection (HPLC-UV) and HPLC-MS reference methods for the identification of energetic contaminants and their degradation products in soil and marine sediment samples.  相似文献   

9.
《Vibrational Spectroscopy》2007,43(2):243-248
We have measured the terahertz absorption spectra of 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX), pentaerythritol tetranitrate (PETN), 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX), 2,4,6-trinitrotoluene (TNT), the plastic explosives Semtex H, SX2, and Metabel, and a number of confusion materials using terahertz pulsed transmission spectroscopy. Spectral fingerprints were obtained from 3 to 133 cm−1. The spectra of the plastic explosives are dominated by the spectral signatures of their explosive components due to low frequency vibrations and crystalline phonon modes. Importantly, the terahertz spectra of the confusion materials show no resemblance to the explosives spectra. The refractive indices obtained for the plastic explosives and confusion materials allowed us to derive reflectance spectra, which appear distinct and so suggest that terahertz reflection spectroscopy is a suitable tool for the detection of concealed explosives in security applications.  相似文献   

10.
A simple and sensitive method has been developed using preconcentration technique solid phase microextraction (SPME) and analytical technique HPLC-UV for the determination of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) from the environmental samples. Aqueous solution of anionic surfactant SDS was used for the extraction of both nitramine high explosives, viz., HMX and RDX from soil samples which were subsequently sorbed on SPME fiber. The static desorption was carried out in the desorption chamber of the SPME-HPLC interface in the presence of mobile phase ACN/methanol/water (30:35:35) and the subsequent chromatographic analysis at a flow rate of 0.5 mL/min and detection at 230 nm. For this purpose, a C(18), 5 microm RP analytical column was used as a separation medium in this method. Several parameters relating to SPME, e.g., adsorption/desorption time, concentration of salt, stirring rate, etc., were optimized. The method was linear over the range of 20-400 ng/mL for HMX and RDX standards in the presence of surfactant in aqueous phase, respectively. The correlation coefficient (R(2)) for HMX and RDX are 0.9998 and 0.9982, respectively. With SPME, the detection limits (S/N = 3) in ng/mL are 0.05 and 0.1 for HMX and RDX, respectively in the presence of the SDS surfactant. The developed method has been applied successfully to the analysis of real environmental samples like bore well water, river water, and ground alluvial soil.  相似文献   

11.
Contamination of groundwater, soil, and the marine environment by explosives is a global issue. Identification, characterization and remediation are all required for a site recognized as contaminated with 2,4,6-trinitrotoluene (TNT) or hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). For each step, a method to accurately measure the contaminant level is needed. This paper reviews some of the current methods with emphasis on a single biosensor developed in our laboratory. Current regulatory methods require samples to be sent off-site to a certified laboratory resulting in time delays up to a month. A continuous flow biosensor for detection of explosives has been developed and tested for the rapid field screening of environmental samples. The detection system is based on a displacement immunoassay in which monoclonal antibodies to (TNT) and RDX are immobilized on solid substrates, allowed to bind fluorescently labeled antigens, and then exposed to explosives in aqueous samples. Explosive compounds present in the sample displace proportional amounts of the fluorescent label, which can then be measured to determine the original TNT or RDX concentration. The system can accurately detect ppb to ppt levels of explosives in groundwater or seawater samples and in extracts of contaminated soil. The biosensor has applications in environmental monitoring at remediation sites or in the location of underwater unexploded ordnance.  相似文献   

12.
Desorption electrospray ionization (DESI) is applied to the rapid, in-situ, direct qualitative and quantitative analysis of mixtures of explosives and drugs from a variety of fabrics, including cotton, silk, denim, polyester, rayon, spandex, leather and their blends. The compounds analyzed were explosives: trinitrohexahydro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), 2,4,6-trinitrotoluene (TNT), pentaerythritol tetranitrate (PETN) and the drugs of abuse: heroin, cocaine, and methamphetamine. Limits of detection are in the picogram range. DESI analyses were performed without sample preparation and carried out in the presence of common interfering chemical matrices, such as insect repellant, urine, and topical lotions. Spatial and depth profiling was investigated to examine the depth of penetration and lateral resolution. DESI was also used to examine cotton transfer swabs used for travel security sample collection in the screening process. High throughput quantitative analysis of fabric surfaces for targeted analytes is also reported.  相似文献   

13.
A sulfobutyl ether-beta-cyclodextrin-assisted electrokinetic chromatographic method was developed to rapidly resolve and detect the cyclic nitramine explosives 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaaza-isowurtzitane (CL-20), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and their related degradation intermediates in environmental samples. Development of the electrophoretic method required the measurement of the aqueous solubility of CL-20 which was determined to be 3.59 +/- 0.74 mg/l at 25 degrees C (95% confidence interval, n=3). The performance of the method was then compared to results obtained from existing high-performance liquid chromatography methods including US Environmental Protection Agency method 8330.  相似文献   

14.
Olivier Vigneau 《Talanta》2009,77(5):1609-1058
The introduction of chloroform into the nebulising gas of a LC/MS electrospray interface (ESI), in a perfectly controlled way, leads to the formation of intense adducts ([M+Cl]) when a mobile phase containing HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane or octogen) and RDX (1,3,5-trintro-1,3,5-triazacyclohexane or hexogen) is eluted. This LC/MS method allows the direct analysis of aqueous samples containing HMX and RDX at the pictogram level without a concentration step. The method is used to determine HMX and RDX concentrations in ground water samples from a military site.  相似文献   

15.
The contamination of soil by nitroaromatic and nitramine explosives is widespread during the manufacture, testing and disposal of explosives and ammunitions. The analysis for the presence of trace explosive contaminants in soil becomes important in the light of their effect on the growth of different varieties of plants and crops. 2,4,6-Trinitrotoluene (TNT), cyclotrimethylene trinitramine (Research Department explosive, RDX) and cyclotetramethylene tetranitramine (high melting point explosive, HMX), other related explosive compounds and their by-products must be monitored in soil and surrounding waterways since these are mutagenic, toxic and persistent pollutants that can leach from the contaminated soil to accumulate in the food chain. In this study, a voltammetric method has been developed for the determination of explosive such as RDX, HMX and TNT. The electrochemical redox behavior of RDX, HMX and TNT was studied through cyclic voltammetry and quantitative determination was carried out by using square wave voltammetry technique. Calibration curves were drawn and were linear in the range of 63-129 ppm for RDX with a detection limit of 10 ppm, 49-182 ppm for HMX with a detection limit of 1 ppm and 38-139 ppm for TNT with a detection limit of 1 ppm. This method was applied to determine the contaminations in several soil samples that yielded a relative error of 1% in the concentrations.  相似文献   

16.
The insensitive property of explosives containing pyridine is combined with the high energy of nitramine explosives,and the concept of new nitramine explosives containing pyridine is proposed,into which nitramine group with N N bonds is introduced as much as possible.Based on molecular structures of nitramine compounds containing pyridine,density functional theory(DFT) calculation method was applied to study designed molecules at B3LYP/6-31+G(d) level.The geometric and electronic structures,density,heats of formation(HOF),detonation performance and bond dissociation energies(BDE) were investigated and comparable to 1,3,5-trinitro-1,3,5-triazinane(RDX) and 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX).The simulation results reveal that molecules B and D perform similarly to traditionally used RDX.Molecule E outperform RDX,with performance that approach that of HMX and may be considered as potential candidate of high energy density compound(HEDC).These results provide basic information for molecular design of novel high energetic density compounds.  相似文献   

17.
Raman spectra from 50 to 3500 cm(-1) and 4-296 K are analyzed for molecular crystal powders of the explosives pentaerythritol tetranitrate (PETN), beta-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) and the inert naphthalene. Temperature-dependent Raman spectroscopy is utilized for its sensitivity to anharmonic couplings between thermally populated phonons and higher frequency vibrations relevant to shock up-pumping. The data are analyzed with anharmonic perturbation theory, which is shown to have significant fundamental limitations in application to real data. Fitting to perturbation theory revealed no significant differences in averaged anharmonicities among the three explosives, all of which exhibited larger averaged anharmonicities than naphthalene by a factor of 3. Calculations estimating the multiphonon densities of states also failed to correlate clearly with shock sensitivity. However, striking differences in temperature-dependent lifetimes were obvious: PETN has long lived phonons and vibrons, HMX has long lived phonons but short lived vibrons, while TATB has short lived phonons and vibrons at low temperature. Naphthalene, widely used as a model system, has significantly different anharmonicities and density of states from any of the explosives. The data presented suggest the further hypothesis that hindered vibrational energy transfer in the molecular crystals is a significant factor in shock sensitivity.  相似文献   

18.
In this work, a low‐pressure air dielectric‐barrier discharge (DBD) ion source using a capillary with the inner diameter of 0.115 and 12 mm long applicable to miniaturized mass spectrometers was developed. The analytes, trinitrotoluene (TNT), 1,3,5‐trinitroperhydro‐1,3,5‐triazine (RDX), 1,3,5,7‐tetranitroperhydro‐1,3,5,7‐tetrazocine (HMX), pentaerythritol tetranitrate (PETN), nitroglycerine (NG), hexamethylene triperoxide diamine (HMTD), caffeine, cocaine and morphine, introduced through the capillary, were ionized by a low‐pressure air DBD. The ion source pressures were changed by using various sizes of the ion sampling orifice. The signal intensities of those analytes showed marked pressure dependence. TNT was detected with higher sensitivity at lower pressure but vice versa for other analytes. For all analytes, a marked signal enhancement was observed when a grounded cylindrical mesh electrode was installed in the DBD ion source. Among nine analytes, RDX, HMX, NG and PETN could be detected as cluster ions [analyte + NO3]? even at low pressure and high temperature up to 180 °C. The detection indicates that these cluster ions are stable enough to survive under present experimental conditions. The unexpectedly high stabilities of these cluster ions were verified by density functional theory calculation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Ma L  Xin B  Chen Y 《The Analyst》2012,137(7):1730-1736
The detection of explosives in soil is of great significance in public security programmes and environmental science. In the present work, a ppb-level method was established to directly detect the semi-volatile explosives, RDX and TNT, present in complex soil samples. The method used thermal sampling technique and a direct current atmospheric pressure glow discharge source mounted with a brass cylinder electrode (9 mm × 4.6 mm i.d./5.6 mm o.d.) to face the samples, requiring no sample pretreatment steps such as soil extraction (about ten hours). It was characterized by the merits of easy operation, high sensitivity and fast speed, and has been validated by real soil samples from various locations around a factory or firecracker releasing fields. It took only 5 min per sample, with the limit of detection down to 0.5 ppb (S/N = 3) trinitrohexahydro-1,3,5-triazine in soils heated at 170 °C. It is also extendable to the analysis of other volatile analytes.  相似文献   

20.
Novel sampling and detection methods using desorption electrospray ionization (DESI) are examined in the detection of explosives (RDX, TNT, HMX, and TNB) and agricultural chemicals (atrazine, alachlor and acetochlor) from aqueous matrices and authentic contaminated groundwater samples. DESI allows analysis of solid and liquid compounds directly from surfaces of interest with little or no sample preparation. Significant savings in analysis time and sample preparation are realized. The methods investigated here include (i) immediate analysis of filter paper wetted with contaminated water samples without further sample preparation, (ii) rapid liquid-liquid extraction (LLE), and (iii) analyte extraction from contaminated groundwater samples on-site using solid-phase extraction (SPE) membranes, followed by direct DESI analysis of the membrane. The wetted filter paper experiment demonstrates the maximum sample throughput for DESI analysis of aqueous matrices but has inadequate sensitivity for some of these analytes. Both the LLE and the SPE methods have adequate sensitivity. The resulting SPE membranes and/or small volume solvent extracts produced in these experiments are readily transported to off-site facilities for direct analysis by DESI. This realizes a significant reduction in the costs of sample shipping compared with those for typical liter-sized samples of groundwater. Total analysis times for these preliminary DESI analyses are comparable with or shorter than those for GC/MS and limits of detection approach environmental action levels for these compounds while maintaining a modest relative standard deviation. Tandem mass spectrometric data is used to provide additional specificity as needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号