首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nickel(II) complexes of bidentate N-heterocyclic carbene (NHC)/phosphane ligand L were prepared and structurally characterized. Unlike palladium, which forms [PdCl(2)(L)], the stable nickel product isolated is the ionic [Ni(L)(2)]Cl(2). These Ni(II) complexes are highly robust in air. Among different N-substituents on the ligand framework, the nickel complex of ligand L bearing N-1-naphthylmethyl groups (2 a) is a highly effective catalyst for Suzuki cross-coupling between phenylboronic acid and a range of aryl halides, including unreactive aryl chlorides. The activities of 2 a are largely superior to those of other reported nickel NHC complexes and their palladium counterparts. Unlike the previously reported [NiCl(2)(dppe)] (dppe=1,2-bis(diphenylphosphino)ethane), 2 a can effectively catalyze the cross-coupling reaction without the need for a catalytic amount of PPh(3), and this suggests that the PPh(2) functionality of hybrid NHC ligand L can partially take on the role of free PPh(3). However, for unreactive aryl chlorides at low catalyst loading, the presence of PPh(3) accelerates the reaction.  相似文献   

2.
A dicyclohexyl(2-sulfo-9-(3-(4-sulfophenyl)propyl)-9H-fluoren-9-yl)phosphonium salt was synthesized in 64% overall yield in three steps from simple commercially available starting materials. The highly water-soluble catalyst obtained from the corresponding phosphine and [Na(2)PdCl(4)] enabled the Suzuki coupling of a broad variety of N- and S-heterocyclic substrates. Chloropyridines (-quinolines) and aryl chlorides were coupled with aryl-, pyridine- or indoleboronic acids in quantitative yields in water/n-butanol solvent mixtures in the presence of 0.005-0.05 mol % of Pd catalyst at 100 degrees C, chloropurines were quantitatively Suzuki coupled in the presence of 0.5 mol % of catalyst, and S-heterocyclic aryl chlorides and aryl- or 3-pyridylboronic acids required 0.01-0.05 mol % Pd catalyst for full conversion. The key to the high activity of the Pd-phosphine catalyst is the rational design of the reaction parameters (i.e., the presence of water in the reaction mixture, good solubility of reactants and catalyst in n-butanol/water (3:1), and the electron-rich and sterically demanding nature of the phosphine ligand).  相似文献   

3.
A new substrate class for nickel‐catalyzed C(sp3) cross‐coupling reactions is reported. α‐Oxy radicals generated from benzylic acetals, TMSCl, and a mild reductant can participate in chemoselective cross‐coupling with aryl iodides using a 2,6‐bis(N‐pyrazolyl)pyridine (bpp)/Ni catalyst. The mild, base‐free conditions are tolerant of a variety of functional groups on both partners, thus representing an attractive C? C bond‐forming approach to dialkyl ether synthesis. Characterization of a [(bpp)NiCl] complex relevant to the proposed catalytic cycle is also described.  相似文献   

4.
Nanometric copper oxide supported on silica has been found to be a highly efficient and reusable catalyst for the C–N cross‐coupling reaction of amines with aryl halides under ligand‐free conditions. Various arylamines with different substituted groups can be synthesized in moderate to good yields. The catalyst can be recycled at least five times without obvious loss in catalytic activity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
[Pd(Cl)2{P(NC5H10)(C6H11)2}2] ( 1 ) has been prepared in quantitative yield by reacting commercially available [Pd(cod)(Cl)2] (cod=cyclooctadiene) with readily prepared 1‐(dicyclohexylphosphanyl)piperidine in toluene under N2 within a few minutes at room temperature. Complex 1 has proved to be an excellent Negishi catalyst, capable of quantitatively coupling a wide variety of electronically activated, non‐activated, deactivated, sterically hindered, heterocyclic, and functionalized aryl bromides with various (also heterocyclic) arylzinc reagents, typically within a few minutes at 100 °C in the presence of just 0.01 mol % of catalyst. Aryl bromides containing nitro, nitrile, ether, ester, hydroxy, carbonyl, and carboxyl groups, as well as acetals, lactones, amides, anilines, alkenes, carboxylic acids, acetic acids, and pyridines and pyrimidines, have been successfully used as coupling partners. Furthermore, electronic and steric variations are tolerated in both reaction partners. Experimental observations strongly indicate that a molecular mechanism is operative.  相似文献   

6.
An efficient catalytic system using 1‐benzyl‐4‐aza‐1‐azoniabicyclo[2.2.2]octane chloride ((BeDABCO)2Pd2Cl6) was developed for the Hiyama cross‐coupling reaction of various aryl halides with triethoxy(phenyl)silane. The substituted biaryls were produced in excellent yields in short reaction times using a catalytic amount of this catalyst in NMP at 100 °C. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Palladium supported on silica–chitosan hybrid material was prepared and characterized using thermogravimetric and differential thermogravimetric analyses, scanning electron microscopy, and Fourier transform infrared, energy‐dispersive X‐ray and X‐ray photoelectron spectroscopies. The prepared Pd‐CS@SiO2 catalyst (1 mol%) was used for the Suzuki–Miyaura cross‐coupling reaction of various aryl halides and arylboronic acids in 95% ethanol at 80 °C and the Mizoroki–Heck reaction in dimethylformamide at 110 °C using K2CO3 as a base. The developed catalyst is well suitable for the 3R approach (recoverable, robust, recyclable) for cross‐coupling reactions without appreciable loss of its activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Direct arylation of the ortho‐C? H bond of an aryl pyridine or an aryl imine with an aryl Grignard reagent has been achieved by using an iron‐diamine catalyst and a dichloroalkane as an oxidant in a short reaction time (e.g., 5 min) under mild conditions (0 °C). The use of an aromatic co‐solvent, such as chlorobenzene and benzene, and slow addition of the Grignard reagent are essential for the high efficiency of the reaction. The present arylation reaction has distinct merits over the previously developed reaction that used an arylzinc reagent, such as its reaction rate and atom economy. Selective C? H bond activation occurs in the presence of a leaving group, such as a tosyloxy, chloro, and bromo group. Studies on a stoichiometric reaction and kinetic isotope effects shed light on the reaction intermediate and the C? H bond‐activation step.  相似文献   

9.
An efficient copper(I)‐catalyzed coupling of triaryl and trialkylindium reagents with aryl iodides and bromides is reported. The reaction proceeds at low catalyst loadings (2 mol %) and generally only requires 0.33 equivalents of the triorganoindium reagent with respect to the aryl halide as all three organic nucleophilic moieties of the reagent are transferred to the products through consecutive transmetalations. The reaction tolerates a variety of functional groups and sterically hindered substrates. Furthermore, preliminary mechanistic studies that entailed the synthesis and characterization of potential reaction intermediates offered a glimpse of the elementary steps that constitute the catalytic cycle.  相似文献   

10.
Hypervalent‐iodine‐mediated oxidative coupling of the two aryl groups in either 2‐acylamino‐N‐phenyl‐benzamides or 2‐hydroxy‐N‐phenylbenzamides, with concomitant insertion of the ortho‐substituted N or O atom into the tether, has been described for the first time. This unusual metal‐free rearrangement reaction involves an oxidative C(sp2)? C(sp2) aryl–aryl bond formation, cleavage of a C(sp2)? C(O) bond, and a lactamization/lactonization. Furthermore, unsymmetrical diaryl compounds can be easily obtained by removing the tether within the cyclized product.  相似文献   

11.
Optimal conditions for a general Ni‐catalysed Negishi cross‐coupling of alkyl zinc halides with aryl, heteroaryl and alkenyl halides have been determined. These conditions allow the reaction to take place smoothly, with low catalyst loading, and in the presence of a wide variety of functional groups to afford products in good yields at room temperature. DFT studies on the mechanism support the occurrence of a catalytic cycle involving transmetalation of the alkyl zinc halide to NiI followed by oxidative addition of the haloarene and C? C reductive elimination.  相似文献   

12.
Palladium‐catalysed cross‐coupling reactions are some of the most frequently used synthetic tools for the construction of new carbon–carbon bonds in organic synthesis. In the work presented, Pd(II) complex catalysts were synthesized from palladium chloride and nitrogen donor ligands as the precursors. Infrared and 1H NMR spectroscopic analyses showed that the palladium complexes were formed in the bidentate mode to the palladium centre. The resultant Pd(II) complexes were tested as catalysts for the coupling of organobismuth(III) compounds with aryl and acid halides leading to excellent yields with high turnover frequency values. The catalysts were stable under the reaction conditions and no degradation was noticed even at 150°C for one of the catalysts. The reaction proceeds via an aryl palladium complex formed by transmetallation reaction between catalyst and Ar3Bi. The whole synthetic transformation has high atom economy as all three aryl groups attached to bismuth are efficiently transferred to the electrophilic partner.  相似文献   

13.
Reductive cross‐electrophile coupling reactions have recently been developed to a versatile and sustainable synthetic tool for selective C?C bond formation. The employment of cheap and abundant electrophiles avoids the pre‐formation and handling of organometallic reagents. In situ reductive coupling is effected in the presence of a transition‐metal catalyst (Ni, Co, Pd, Fe) and a suitable metallic reductant (Mn, Zn, Mg). This Concept article assesses the current state of the art and summarizes recent protocols with various combinations of alkyl, alkenyl, allyl, and aryl reagents and highlights key mechanistic studies.  相似文献   

14.
The heterogeneous cross‐coupling reaction of aryl iodides with diphenylphosphine was achieved in toluene at 115 °C in the presence of 10 mol% of phenanthroline‐functionalized MCM‐41‐supported copper (I) complex (Phen‐MCM‐41‐CuI) with Cs2CO3 as base, yielding various unsymmetric triarylphosphines in good to excellent yields. This protocol can tolerate a wide range of functional groups and does not need the use of expensive additives or harsh reaction conditions. This heterogeneous Cu (I) catalyst exhibited the same catalytic activity as homogeneous CuI/Phen system, and could easily be recovered by a simple filtration of the reaction solution and recycled up to seven times without significant loss of activity.  相似文献   

15.
In this work, ortho‐palladated complexes [Pd(µ‐Cl)(C6H4CH2 NRR′‐κ2‐C,N)]2 and [Pd(C6H4CH2NH2‐2‐C,N)Cl(Y)] were tested in the Suzuki–Miyaura cross‐coupling reaction. Cyclopalladated Pd(II) complexes as thermally stable catalysts can activate aryl bromides and chlorides. These complexes were active and efficient catalysts for the Suzuki–Miyaura reaction of aryl bromides and even less reactive aryl chlorides. The cross‐coupled products of a variety of aryl bromides and aryl chloride with phenylboronic acid in methanol as solvent at 60 °C were produced in excellent yields. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
A general methodology for the α‐arylation of ketones using a nickel catalyst has been developed. The new well‐defined [Ni(IPr*)(cin)Cl] ( 1 c ) pre‐catalyst showed great efficiency for this transformation, allowing the coupling of a wide range of ketones, including acetophenone derivatives, with various functionalised aryl chlorides. This cinnamyl‐based Ni–N‐heterocyclic carbene (NHC) complex has demonstrated a different behaviour to previously reported NHC‐Ni catalysts. Preliminary mechanistic studies suggest a Ni0/NiII catalytic cycle to be at play.  相似文献   

17.
The first palladium‐catalyzed method for the arylation of α‐phosphonovinyl nonaflates is described. Using a catalyst comprised of Pd(OAc)2 and SPhos, terminal and internal α‐aryl vinylphosphonates could be efficiently accessed under mild conditions. The reaction features a broad coupling partner scope and tolerates many functional groups.  相似文献   

18.
The Suzuki cross‐coupling reaction of various bromine‐containing substrates and phenylboronic acid in toluene at 90 °C on a Pd(AcO)2Py2 catalyst supported on an Mg? Al hydrotalcite, using K2CO3 as the base, was studied. The conversion and selectivity results obtained for many of the substrates were excellent and similar to those provided by more active or even homogeneous catalysts. The reactions of aryl polybromides and phenylboronic acid gave the corresponding polyaromatic compounds in variable yields depending on the particular substrate. Arylation occurred in a consecutive manner by substitution of the different Br atoms. ICP‐MS measurements of the palladium content of the catalyst performed prior to and after the reaction revealed that part of the metal is incorporated into the bulk solution; therefore, the catalytic process is not purely heterogeneous. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
We present a general approach to C-P bond formation through the cross-coupling of aryl halides with a dialkyl phosphite, diphenylphosphine oxide, and diphenylphosphane by using [NiCl(2) (dppp)] as catalyst (dppp=1,3-bis(diphenylphosphino)propane). This catalyst system displays a broad applicability that is capable of catalyzing the cross-coupling of aryl bromides, particularly a range of unreactive aryl chlorides, with various types of phosphorus substrates, such as a dialkyl phosphite, diphenylphosphine oxide, and diphenylphosphane. Consequently, the synthesis of valuable phosphonates, phosphine oxides, and phosphanes can be achieved with one catalyst system. Moreover, the reaction proceeds not only at a much lower temperature (100-120?°C) relative to the classic Arbuzov reaction (ca.?160-220?°C), but also without the need of external reductants and supporting ligands. In addition, owing to the relatively mild reaction conditions, a range of labile groups, such as ether, ester, ketone, and cyano groups, are tolerated. Finally, a brief mechanistic study revealed that by using [NiCl(2) (dppp)] as a catalyst, the Ni(II) center could be readily reduced in situ to Ni(0) by the phosphorus substrates due to the influence of the dppp ligand, thereby facilitating the oxidative addition of aryl halides to a Ni(0) center. This step is the key to bringing the reaction into the catalytic cycle.  相似文献   

20.
An efficient catalytic system of CuI/8‐hydroxyquinalidine was developed for the coupling of aryl iodides and indole as well as some azoles. The reaction could be carried out at 90°C under the condition of relatively low catalyst loading, affording various N‐arylindoles and N‐aryl azoles in good yields. The functionalized and hindered aryl iodides were suitable substrates for this transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号