首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four new heterotrinuclear complexes have been synthesized and characterized, namely {[Ni(L)2]2[Cu(opba)]}(ClO4)2, where opba denotes o-phenylenebis(oxamato) and L stands for 1,10-phenanthroline(phen) (1), 5-nitro-1,10-phenanthroline(NO2-phen) (2), 2,2'-bipyridyl(bpy) (3) and 4,4'-dimethyl-2,2'-bipyridyl(Me2bpy) (4). The temperature dependence of the magnetic susceptibility of {[Ni(phen)2]2[Cu(opba)]}(ClO4)2.3H2O has been studied in the 4-300 K range, giving the exchange integral J=-109 cm-1. The MT vs. T plot exhibits a minimum at about 100 K, characteristic of this kind of coupled polymetallic complex with an irregular spin-state structure.  相似文献   

2.
The self-adaptation of manganese-chloride arrangement with the tripodal ligand 1,3,5-tris(benzimidazoyl-1-ylmethyl)-2,4,6-trimethylbenzene (Me(3)-TBzIm) afforded a rare 3D metal-organic framework, [Mn(5)Cl(10)(Me(3)-TBzIm)(4)](n) (1) showing a high spin ground state with S = 15/2.  相似文献   

3.
Shen  Xiaoping  Li  Baolong  Zou  Jianzhong  Xu  Zheng  Yu  Yunpeng  Liu  Shixiong 《Transition Metal Chemistry》2002,27(4):372-376
K3[Cr(CN)6] reacts with the mononuclear MnIII complex Mn(salen)ClO4 · 2H2O [salen: N,N-ethylenebis(salicylideneiminato)dianion] to give a bimetallic heptanuclear complex cation salt [Cr{(CN)Mn(salen · H2O)}6][Cr(CN)6]6H2O. In the complex anion, [Cr{(CN)Mn(salen · H2O)}6]3+, six MnIII ions coordinate to a CrIII center via cyano bridges, forming a spherical species with 3 symmetry. A study of magnetic properties shows the presence of antiferromagnetic interaction through the cyanide bridge between CrIII (S = 3/2) and MnIII (S = 4/2) and results in a ground state S = 21/2.  相似文献   

4.
Cyclobutane-1,2,3,4-tetrone has been both predicted and found to have a triplet ground state, in which a b(2g) σ MO and an a(2u) π MO are each singly occupied. The nearly identical energies of these two orbitals of (CO)(4) can be attributed to the fact that both of these MOs are formed from a bonding combination of C-O π* orbitals in four CO molecules. The intrinsically stronger bonding between neighboring carbons in the b(2g) σ MO compared to the a(2u) π MO is balanced by the fact that the non-nearest-neighbor, C-C interactions in (CO)(4) are antibonding in b(2g), but bonding in a(2u). Crossing between an antibonding, b(1g) combination of carbon lone-pair orbitals in four CO molecules and the b(2g) and a(2u) bonding combinations of π* MOs is responsible for the occupation of the b(2g) and a(2u) MOs in (CO)(4). A similar orbital crossing occurs on going from two CO molecules to (CO)(2), and this crossing is responsible for the triplet ground state that is predicted for (CO)(2). However, such an orbital crossing does not occur on formation of (CO)(2n+1) from 2n + 1 CO molecules, which is why (CO)(3) and (CO)(5) are both calculated to have singlet ground states. Orbital crossings, involving an antibonding, b(1), combination of lone-pair MOs, occur in forming all (CO)(2n) molecules from 2n CO molecules. Nevertheless, (CO)(6) is predicted to have a singlet ground state, in which the b(2u) σ MO is doubly occupied and the a(2u) π MO is left empty. The main reason for the difference between the ground states of (CO)(4) and (CO)(6) is that interactions between 2p AOs on non-nearest-neighbor carbons, which stabilize the a(2u) π MO in (CO)(4), are much weaker in (CO)(6), due to the much larger distances between non-nearest-neighbor carbons in (CO)(6) than in (CO)(4).  相似文献   

5.
《Chemical physics》2003,294(2):211-220
Clusters of the type CunN0,±1 (n=1–4) are investigated computationally using density functional theory methods. Equilibrium geometries are optimized under the constraint of well-defined point-group symmetries at the B3LYP level employing a pseudo-potential method in conjunction with double-zeta basis sets. In this article, different molecular properties such as total energies, electron affinities, ionization potentials, fragmentation energies and equilibrium geometries of the CunN0,±1 (n=1–4) clusters are systematically calculated and discussed. In particular, the photoelectron spectra of the anionic CunN−1 (n=2–4) clusters are calculated showing a good agreement with the available experimental results. In addition, Mulliken and natural orbital population analyses, and natural orbital configurations are calculated in order to elucidate the charge distributions in the clusters.  相似文献   

6.
The reactivity of white phosphorus and yellow arsenic towards two different nickel nacnac complexes is investigated. The nickel complexes [(L1Ni)2tol] ( 1 , L1=[{N(C6H3iPr2-2,6)C(Me)}2CH]) and [K2][(L1Ni)2(μ,η1 : 1-N2)] ( 6 ) were reacted with P4, As4 and the interpnictogen compound AsP3, respectively, yielding the homobimetallic complexes [(L1Ni)2(μ-η2121-E4)] (E=P ( 2 a ), As ( 2 b ), AsP3 ( 2 c )), [(L1Ni)2(μ,η3 : 3-E3)] (E=P ( 3 a ), As ( 3 b )) and [K@18-c-6(thf)2][L1Ni(η1 : 1-E4)] (E=P ( 7 a ), As ( 7 b )), respectively. Heating of 2 a , 2 b or 2 c also leads to the formation of 3 a or 3 b . Furthermore, the reactivity of these compounds towards reduction agents was investigated, leading to [K2][(L1Ni)2(μ,η2 : 2-P4)] ( 4 ) and [K@18-c-6(thf)3][(L1Ni)2(μ,η3 : 3-E3)] (E=P ( 5 a ), As ( 5 b )), respectively. Compound 4 shows an unusual planarization of the initial Ni2P4-prism. All products were comprehensively characterized by crystallographic and spectroscopic methods.  相似文献   

7.
The preparation of the complex Fe(ppi)3(NCS)2 (where ppi = N-phenyl-2-pyridinaldimine) is described. Mössbauer and magnetic susceptibility of this compound was studied in the temperature range between 298 and 78 K and clearly indicate a temperature induced high-spin(5T2)-low-spin(1A1) transition.  相似文献   

8.
A combined structural, magnetic and thermoelectric study of polycrystalline ternary MIn2S4 (M = Mn, Fe, Co, Ni) thiospinels is presented. All compounds crystallize with MgAl2O4-type structure. Rietveld refinement analysis confirmed that the preferred crystallographic position of transition metal element changes from mainly tetrahedral 8a for Mn to exclusively octahedral 16d for Ni (i.e. increase of the inversion parameter). Magnetic susceptibility measurements revealed M-elements to possess 2+ oxidation state in MIn2S4. All these compounds order antiferromagnetically with Néel temperatures TN ranging from 5–13 K. The studied thiospinels are n-type semiconductors with large values of electrical resistivity ρ > 0.6 Ω · m at room temperature. An increase of the inversion parameter leads to a reduction of the determined activation energies, as well as to a more disorder-like behavior of thermal conductivity. The highest thermoelectric Figure of merit ZT was observed for MIn2S4 with M = Fe, Ni, which adopt inverse spinel structure.  相似文献   

9.
The syntheses and magnetic susceptibilities of a pure series of rare copper minerals from the atacamite family with general formula ZnxCu4-x(OH)6Cl2 (0 相似文献   

10.
A facile two-step hydrothermal method is developed for the large-scale preparation of lithium nickel manganese oxide spinel as a cathode material for lithium ion batteries. In the reaction, nickel is introduced in a first step at neutral pH, followed by lithium insertion under base to form a product having composition Li(1.02)Ni(0.5)Mn(1.5)O(3.88). The X-ray diffraction pattern and Raman spectroscopy of the synthesized material support a cubic Fd3m structure in which Ni and Mn are disordered on the 16d Wyckoff site, necessary for good cycling characteristics. XP spectroscopy and elemental analysis confirms that Mn remains reduced in the final product (Z(Mn) = 3.82) and that two different chemical environments for Ni exist on the surface. SEM imaging shows a primary particle size of ~200 nm, and galvanostatic cycling of the material vs. Li(+/0) gives a reversible gravimetric capacity of ~120 mA h g(-1) at 1 C rate (147 mA g(-1)) with reversible cycling up to 1470 mA g(-1), supported by rapid Li(+) diffusion. The capacity fade at 1 C is substantial, 17.3% over the first 100 cycles between 3.4 and 5.0 V. However, when the voltage limits are altered, the capacity retention is excellent: nearly 100% when cycled either between 3.4 and 4.4 V (where oxygen vacancies are not electrochemically active) or 89% when cycled between 4.4 and 5.0 V (where the Jahn-Teller active Mn(4+/3+) couple is not accessed).  相似文献   

11.
The title compound was prepared in 48% overall yield using a seven-step sequence. The synthesis involves stepwise construction of a 3-formyl-3,3-diphenypropyl side chain from the double bond of 3-ethenyl-3-methylcyclohexanone followed by aldol ring closure. The approach represents a general strategy for the synthesis of a number of (±)-7,7-diary1–3,4,4a,5,6,7-hexahydro-1(2H)-naphthalenones.  相似文献   

12.
X射线衍射Rietveld分析和微反分析表明, A位含Dy的A2BO4型过渡金属稀土复合氧化物Dy0.5Sr1.5Mn1-xNixO4(0<=x<=1), 是空间群为I4/mmm的四方相K2NiFe型结构, A位和B位约有3%至7%的占位无序缺位。键价计算表明, B位Mn的平均价态在3.73至3.77之间, Ni在2.84至2.96之间。对CO氧化催化活性顺序为x=0.2>0.4>0.6>0.8>1.0。x=0.2的样品, 在空速5000h^-^1, 463K时, CO转化率达80%。  相似文献   

13.
X射线衍射Rietveld分析和微反分析表明, A位含Dy的A2BO4型过渡金属稀土复合氧化物Dy0.5Sr1.5Mn1-xNixO4(0<=x<=1), 是空间群为I4/mmm的四方相K2NiFe型结构, A位和B位约有3%至7%的占位无序缺位。键价计算表明, B位Mn的平均价态在3.73至3.77之间, Ni在2.84至2.96之间。对CO氧化催化活性顺序为x=0.2>0.4>0.6>0.8>1.0。x=0.2的样品, 在空速5000h^-^1, 463K时, CO转化率达80%。  相似文献   

14.
The n = 1 Ruddlesden-Popper (RP) phases LaSrM(0.5)Ru(0.5)O(4±δ) (M = Co, Ni and Zn) have been prepared by solid state reactions and structurally characterized by powder X-ray and electron diffraction. All the samples adopt the tetragonal I4/mmm space group with random M and Ru cation occupation on the B-sites. The potential causes of no cation ordering are discussed. A combined analysis of the tolerance factors, the distortion of the octahedral coordination of M and Ru cations and the magnetic interactions between M and Ru cations provide a better understanding for forming a phase with 3D cation ordering on the B-sites in the n = 1 RP phases. The investigation of XPS spectra suggests that the transition element species exist as mixed ion pairs, Ru((4-δ)+)-Ru(4+)? Co(2+)-Co(3+) in LaSrCo(0.5)Ru(0.5)O(4), and Ru(4+)-Ru((4+δ)+)? Ni(+)-Ni(2+) in LaSrNi(0.5)Ru(0.5)O(4), which is consistent with cation disorder over the B sites. LaSrCo(0.5)Ru(0.5)O(4) shows a weakly ferromagnetic behaviour below 50 K; LaSrNi(0.5)Ru(0.5)O(4) is evidenced by the presence of long-range magnetic ordering at a Néel temperature of 125 K, and LaSrZn(0.5)Ru(0.5)O(4) exhibits a paramagnetic behaviour down to 5 K. Due to atomic disorder, Ru4d, O2p covalent coupling is weakened, strengthening the intraatomic spin-spin coupling among the π* electrons. Charge transfer between Ru and Co or Ru and Ni, as well as the increasing overlap of both nearest-neighbour and next-nearest-neighbour Ru 4d electrons due to atomic disorder, favour the formation of ferromagnetic interactions. Although antiferromagnetism is dominant, particularly in LaSrNi(0.5)Ru(0.5)O(4), ferromagnetic interactions are stronger in the title compounds than in the related La(2)MRuO(6) (M = Co, Ni) double perovskites where the B-site cations are ordered.  相似文献   

15.
Density functional theory (DFT) calculations, regardless of the exchange-correlation functional, have long failed to reproduce the observed dz2(1) ground state of the [NiIII(TtBuP)(CN)2]- anion (where TtBuP is the strongly ruffled tetra(tbutyl)porphyrin ligand), predicting instead a dx2-y2(1) ground state. Normally, such failures are associated with DFT calculations on spin states of different multiplicity, which is not the case here. The calculations reported here strongly suggest that the problem does not lie with DFT. Instead environmental factors need to be taken into account, such as counterions and solvents. Counterions such as K+ placed against the cyanide nitrogens and polar solvents both result in a dz2(1) ground state, thus finally reconciling theory and experiment.  相似文献   

16.
Low-temperature heat capacity of polynuclear Fe(HTrz)3(B10H10)·H2O (I) and trinuclear [Fe3(PrTrz)6(ReO4)4(H2O)2](ReO4)2 (II) spin crossover coordination compounds was measured in 80–300 K temperature range using a vacuum adiabatic calorimeter. For I, an anomaly of heat capacity with a maximum at T trs=234.5 K (heating mode) was observed, Δtrs H=10.1±0.2 kJ mol?1 Δtrs S=43.0±0.8 J mol? K?1. For II, a smooth anomaly between 150 and 230 K was found, Δtrs H=2.5±0.25 kJ mol?1 Δtrs S=13.6±1.4 J mol? K?1. Anomalies observed in both compounds correspond to 1A1?5T2 spin transition.  相似文献   

17.
Mesoporous TiO2?xAy (A = N, S) thin films were fabricated using thiourea as a doping resource by a combination of sol-gel and evaporation-induced self-assembly (EISA) processes. The results showed that thiourea could serve two functions of co-doping nitrogen and sulfur and changing the mesoporous structure of TiO2 thin films. The resultant mesoporous TiO2?xAy (A = N, S) exhibited anatase framework with a high porosity and a narrow pore distribution. The formation of the O–Ti–N and O–Ti–S bonds in the mesoporous TiO2?xAy (A = N, S) were substantiated by the XPS spectra. A new bandgap in visible light region (520 nm) corresponding to 2.38 eV could be formed by the co-doping. After being illuminated for 3 h, methyl orange could be degraded nearly completely by the co-doped sample under both ultraviolet irradiation and visible light illumination. While pure mesoporous TiO2 could only degrade 60% methyl orange under UV illumination and showed negligible photodegradation capability in the visible light range. Furthermore, the photo-induced hydrophilic activity of TiO2 film was improved by the co-doping. The mesoporous microstructure and high visible light absorption could be attributed to their good photocatalytic acitivity and hydrophilicity.  相似文献   

18.
Iron(II) complexes with 1,2,4-triazoles of composition FeL3A2 · nH2O were synthesized, where L is 4-ethyl- or 4-propyl-1,2,4-triazole (Ettrz, Prtrz, respectively) and A = NO 3, ClO 4, Br; n = 0.5, 1, 2. Magnetochemical studies showed that all these compounds exhibit 1 A 1 5 T 2 spin transition (ST) which is accompanied by thermochromism (a reversible pink white change of color). The ST pattern, i.e., the temperature of a direct (T s) and reverse (T s) transition, and its contrast substantially depend on the nature of both the ligand and anion and on the availability of water molecules in the complex structure. The highest ST temperatures were observed for Fe(Ettrz)3Br2 · 2H2O: T s = 327 K, T s = 314 K.  相似文献   

19.
A novel Mn4 mixed salt, {[(n-Bu4N)(ClO4)2]2[Mn4O6(Tacn)4](ClO4)} · 2H2O (I) and its analogue [Mn4O6(Tacn)4](ClO4)4 · 2H2O (II) (Tacn = 1,4,7-triazacyclononane), have been constructed and structurally characterized by X-ray crystallography. The [Mn4O6]4+ core of these two complexes presents an adamantine-like skeleton. Each Mn atom of both complexes is coordinated by three nitrogen atoms of Tacn and connects other Mn atoms through a single-oxo bridge in an octahedral environment. Two complexes crystallize in monoclinic crystal system, space group C2/c with a = 24.296(11) Å, b = 10.986(5) Å, c = 32.746(15) Å, β = 101.975(6)°, Z = 8 for I and space group P21/n with a = 21.141(10), b = 11.306(5), c = 21.576(10) Å, β = 111.155(5)°, Z = 4 for II.  相似文献   

20.
《Chemical physics letters》1986,124(6):543-548
Fe(ptz)6(BF4)2 (ptz = 1-propyltetrazole) is an iron(II) spin-crossover system which shows light-induced excited spin state trapping. In this paper we show that (a) the same phenomenon can also be observed in Zn1−xFex(ptz)6(BF4)2 (x ≈ 0.1) and is therefore basically a single-ion property, and (b) that the phenomenon is reversible. The efficiency of the light-induced spin crossover is of the order of 0.5% in the forward direction and 0.1% in the reverse direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号