首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metal (M=Zn(II), Ni(II), Cu(II)) complexes with tetradentate Schiff base ligand, bis(pyrrol-2-ylmethyleneamine)phenyl, has been synthesized and characterized by elemental analyses, (1)H NMR, mass spectra and UV-vis spectra. The standard association constants (K(theta)) and the thermodynamic parameters (Delta(r)H(m)(theta),Delta(r)S(m)(theta),Delta(r)G(m)(theta)) for axial coordination of imidazole derivatives with these Shiff base complexes were measured with UV-vis spectrophotometric titration. The decrease of enthalpy is found to be the drive of the axial coordination. Our Schiff base complexes can incorporate two axial ligands, except 2-Et-4-MeIm with two big substituents of great steric bulk according to stoichiometry of 1:1. ZnL displays high selectively binding to imidazole due to the steric bulk effect. Supporting density functional theory (DFT) calculations have been undertaken on B3LYP/6-31G(d) level.  相似文献   

2.
A series of first-row transition metal complexes with the unsymmetrically disubstituted pyridazine ligand picolinaldehyde (6-chloro-3-pyridazinyl)hydrazone (PIPYH), featuring an easily abstractable proton in the backbone, was prepared. Ligand design was inspired by literature-known picolinaldehyde 2-pyridylhydrazone (PAPYH). Reaction of PIPYH with divalent nickel, copper, and zinc nitrates in ethanol led to complexes of the type [Cu(II)(PIPYH)(NO(3))(2)] (1) or [M(PIPYH)(2)](NO(3))(2) [M = Ni(II) (2) or Zn(II) (3)]. Complex synthesis in the presence of triethylamine yielded fully- or semideprotonated complexes [Cu(II)(PIPY)(NO(3))] (4), [Ni(II)(PIPYH)(PIPY)](NO(3)) (5), and [Zn(II)(PIPY)(2)] (6), respectively. Cobalt(II) nitrate is quantitatively oxidized under the reaction conditions to [Co(III)(PIPY)(2)](NO(3)) (7) in both neutral and basic media. X-ray diffraction analyses reveal a penta- (1) or hexa-coordinated (2, 3, and 7) metal center surrounded by one or two tridentate ligands and, eventually, κ-O,O' nitrate ions. The solid-state stoichiometry was confirmed by electron impact (EI) and electrospray ionization (ESI) mass spectrometry. The diamagnetic complexes 5 and 6 were subjected to (1)H NMR spectroscopy, suggesting that the ligand to metal ratio remains constant in solution. Electronic properties were analyzed by means of cyclic voltammetry and, in case of copper complexes 1 and 4, also by electron paramagnetic resonance (EPR) spectroscopy, showing increased symmetry upon deprotonation for the latter, which is in accordance with the proposed stoichiometry [Cu(II)(PIPY)(NO(3))]. Protic behavior of the nickel complexes 2 and 5 was investigated by UV/vis spectroscopy, revealing high π-backbonding ability of the PIPYH ligand resulting in an unexpected low acidity of the hydrazone proton in nickel complex 2.  相似文献   

3.
The coordination chemistry of the tetradentate pyridyl N-donor ligand cis-3,5-bis-[2-pyridinyleneamin]-trans-hydroxycyclohexane (DDOP) has been investigated with zinc(II) nitrate and triflate. The resulting complexes, [Zn(DDOP)(H2O)(NO3)](NO3) (1), and [Zn(DDOP)(H2O)(OTf)](OTf) (2) differ not only in their counterions, but also the arrangement of the axial ligands and their solid state hydrogen bonded networks. Isothermal titration calorimetry was used to assess the difference in binding properties exhibited by the two zinc complexes at physiological pH in an aqueous environment. A series of coordinating amino acids were found to preferentially bind to the mononuclear zinc triflate (1) complex over the corresponding nitrate (2) assembly, with histidine exhibiting a two centre binding mode.  相似文献   

4.
Late-first row transition metal nitrate complexes of the tetradentate N-donor ligand cis-3,5-bis[(2-pyridinyleneamino]-trans-hydroxycyclohexane (DDOP) adopt a mono-cationic [M(DDOP)(H(2)O)(NO(3))](+) structure (M = Co, 1; Cu, 2; Zn, 3) in which the DDOP ligand occupies the equatorial plane. The complexes are essentially isostructural and isomorphous, allowing the Co(II) and Cu(II) complexes to co-crystallize in mixed-metal solid solutions with the formula [Co(x)Cu(1-x)(DDOP)(NO(3))(H(2)O)](NO(3)), where x = 0.4 (4), 0.1 (5), and 0.7 (6). For 4, structural and magnetochemical analysis indicate that the geometry of the octahedral Co(II) complex distorts to match that of the dominant Jahn-Teller distorted Cu(II) center. Magnetic susceptibility data of octahedral Co(II) are sensitive to ligand geometry distortions and have been analyzed accordingly, comparing 4 to the reference systems 1 and 2. Bond valence calculations have been used to estimate the relative stabilities of the six hydrogen bonded networks, suggesting that the stretching of the Co(II) coordination sphere 4 in is assisted by adoption of the most stable hydrogen bonded network; but that in 6 this is overcome by a higher loading of Co. This family of complexes therefore represent predictable metal-based tectons which can help probe the influence of secondary non-covalent interactions over metal coordination geometries and properties.  相似文献   

5.
X-ray diffraction studies on a series of cationic divalent metal nitrate complexes supported by the tris(1-isopropyl-4-tert-butylimidazolyl)phosphine ligand, [[PimPri,But]M(NO3)]+ (M = Co, Cu, Zn, Cd, Hg), demonstrate that the nitrate ligand coordination mode is strongly dependent upon the metal. With the exception of that for the HgII derivative, the nitrate ligand coordination modes correlate with the activities of metal-substituted carbonic anhydrases, such that the only MII-carbonic anhydrases which exhibit significant activity, i.e., the Zn and Co species, are those for which the [[PimPri,But]M(NO3)]+ complexes possess strongly asymmetric nitrate ligands. This trend supports the notion that access to a unidentate, rather than a bidentate, bicarbonate intermediate may be a critical requirement for significant carbonic anhydrase activity. Interestingly, the nitrate coordination modes in the series of group 12 complexes, [[PimPri,But]M(NO3)]+ (M = Zn, Cd, Hg), do not exhibit a monotonic periodic trend: the bidenticity is greater for the cadmium complex than for either the zinc or mercury complexes. Since HgII-carbonic anhydrase is inactive, the correlation between nitrate coordination mode and enzyme activity is anomalous for the mercury complex. Therefore, it is suggested that the inactivity of HgII-carbonic anhydrase may be consequence of the reduced tendency of the mercury center in HgII-carbonic anhydrase to bind water.  相似文献   

6.
Isolation of the free bicyclic tetraamine, [3(5)]adamanzane.H(2)O (1,5,9,13-tetraazabicyclo[7.7.3]nonadecane.H(2)O), is reported along with the synthesis and characterization of a copper(II) complex of the smaller macrocycle [(2.3)(2).2(1)]adamanzane (1,5,9,12-tetraazabicyclo[7.5.2]hexadecane) and of three cobalt(II), four nickel(II), one copper(II), and two zinc(II) complexes with [3(5)]adamanzane. For nine of these compounds (2-8, 10b, and 12) the single-crystal X-ray structures were determined. The coordination geometry around the metal ion is square pyramidal in [Cu([(2.3)(2).2(1)]adz)Br]ClO(4) (2) and trigonal bipyramidal in the isostructural structures [Cu([3(5)]adz)Br]Br (3), [Ni([3(5)]adz)Cl]Cl (5), [Ni([3(5)]adz)Br]Br (6), and [Co([3(5)]adz)Cl]Cl (8). In [Ni([3(5)]adz)(NO(3))]NO(3) (4) and [Ni([3(5)]adz)(ClO(4))]ClO(4) (7) the coordination geometry around nickel(II) is a distorted octahedron with the inorganic ligands at cis positions. The coordination polyhedron around the metal ion in [Co([3(5)]adz)][ZnCl(4)] (10b) and [Zn([3(5)]adz)][ZnCl(4)] (12) is a slightly distorted tetrahedron. Anation equilibrium constants were determined spectrophotometrically for complexes 2-6 at 25 and 40 degrees C and fall in the region 2-10 M(-1) for the halide complexes and 30-65 M(-1) for the nickel(II) nitrate complex (4). Rate constants for the dissociation of the macrocyclic ligand from the metal ions in 5 M HCl were determined for complexes 2, 3, 5, 8, 10, and 12. The reaction rates vary from half-lives at 40 degrees C of 14 min for the dissociation of the Zn([3(5)]adz)(2+) complex (12) to 14-15 months for the Ni([3(5)]adz)Cl(+) ion (5).  相似文献   

7.
The synthesis and characterisation of a new bis([9]aneN3) ligand (L4) containing two [9]aneN3 macrocyclic moieties separated by a 2,6-dimethylenepyridine unit is reported. A potentiometric and 1H NMR study in aqueous solution reveals that ligand protonation occurs on the secondary amine groups and does not involve the pyridine nitrogen. The coordination properties toward Cu(II), Zn(II), Cd(II) and Pb(II) were studied by means of potentiometric and UV spectrophotometric measurements. The ligand can form mono- and binuclear complexes in aqueous solution. In the 1 : 1 complexes, the metal is sandwiched between the two [9]aneN3 moieties and the pyridine N-donor is coordinated to the metal, as actually shown by the crystal structure of the compound [ZnL4](NO3)2.CH3NO2. L4 shows a higher binding ability for Cd(II) with respect to Zn(II), probably due to a better fitting of Cd(II) ion inside the cavity generated by the two facing [9]aneN3 units. The formation of binuclear complexes is accompanied by the assembly of OH-bridged M2(OH)x (x = 1-3) clusters inside the cavity defined by the two facing [9]aneN3 units, and pyridine is not involved in metal coordination. A potentiometric and (1)H NMR study on the coordination of halogenide anions by L4 and its structural analogous L3 in which the two [9]aneN3 units are separated by a shorter quinoxaline linkage, shows that bromide is selectively recognised by L4, while chloride is selectively bound by L3. Such a behaviour is discussed in terms of dimensional matching between the spherical anions and the cavities generated by the two [9]aneN3 units of the receptors.  相似文献   

8.
Complexes analogous to the active site of dissimilatory nitrate reductase from Desulfovibrio desulfuricans are synthesized. The hexacoordinated complexes [PPh 4][Mo (IV)(PPh 3)(SR)(mnt) 2] (R = -CH 2CH 3 ( 1), -CH 2Ph ( 2)) released PPh 3 in solution to generate the active model cofactor, {Mo (IV)(SR)(mnt) 2} (1-), ready with a site for nitrate binding. Kinetics for nitrate reduction by the complexes 1 and 2 followed Michaelis-Menten saturation kinetics with a faster rate in the case of 1 ( V Max = 3.2 x 10 (-2) s (-1), K M = 2.3 x 10 (-4) M) than that reported earlier ( V Max = 4.2 x 10 (-3) s (-1), K M = 4.3 x 10 (-4) M) ( Majumdar, A. ; Pal, K. ; Sarkar, S. J. Am. Chem. Soc. 2006, 128, 4196- 4197 ). The oxidized molybdenum species may be reduced back by PPh 3 to the starting complex, and a catalytic cycle involving [Bu 4N][NO 3] and PPh 3 as the oxidizing and reducing substrates, respectively, is established with the complexes 1 and 2. Isostructural complexes, [Et 4N][Mo (IV)(PPh 3)(X)(mnt) 2] (X = -Br ( 3), -I ( 4)) did not show any reductive activity toward nitrate. The selectivity of the thiolate ligand for the functional activity and the cessation of such activity in isostructural halo complexes demonstrate the necessity of thiolate coordination. Electrochemical data of all these complexes correlate the ability of the thiolated species for such oxotransfer activity. Compounds 1 and 2 are capable of reducing substrates like TMANO or DMSO, but after the initial 15-20% conversion, the product trimethylamine or dimethylsulfide formed interacts with the active parent complexes 1 and 2 thereby slowing down further oxo-transfer reaction similar to feedback type reactions. From the functional nitrate reduction, the molybdenum species finally reacts with the nitrite formed leading to nitrosylation similar to the NO evolution reaction by periplasmic nitrate reductase from Pseudomonas dentrificans. All these complexes ( 1- 4) are characterized structurally by X-ray, elemental analysis, electrochemistry, electronic, FT-IR, mass and (31)P NMR spectroscopic measurements.  相似文献   

9.
Hexakis(2-pyridyloxy)cyclotriphosphazene (L) is an efficient multisite coordination ligand which binds with transition metal ions to produce dinuclear (homo- and heterometallic) complexes [L(CuCl)(CoCl3)], [L(CuCl)(ZnCl3)], [L(CoCl)(ZnCl3)], and [L(ZnCl2)2]. In these dinuclear derivatives the cyclophosphazene ligand utilizes from five to six nitrogen coordination sites out of the maximum of nine available sites. Further, the spacer oxygen that separates the pyridyl moiety from the cyclophosphazene ring ensures minimum steric strain to the cyclophosphazene ring upon coordination. This is reflected in the near planarity of the cyclophosphazene ring in all the dinuclear derivatives. In the dinuclear heterobimetallic derivatives one of the metal ions [Cu(II) or Co(II)] is hexacoordinate and is bound by the cyclophosphazene in a eta5-gem-N5 mode. The other metal ion in these heterobimetallic derivatives [Co(II) or Zn(II)] is tetracoordinate and is bound in an eta(1)-N(1) fashion. In the homobimetallic derivative, [L(ZnCl2)2], one of the zinc ions is five-coordinate (eta3-nongem-N3), while the other zinc ion is tetracoordinate(eta2-gem-N2). The reaction of L with CuCl2 followed by Co(NO3)2.6H2O yields a trinuclear heterobimetallic complex [{(L'CuCl)2Co(NO3)}Cl] [L' = N3P3(OC5H4N)5(O)]. In the formation of this compound an unusual P-O bond cleavage involving one of the phosphorus-pyridyloxy bonds is observed. The molecular structure of [{(L'CuCl)2Co(NO3)}Cl] [L' = N3P3(OC5H4N)5(O)] reveals that each of the two the P-O-cleaved L' ligands is involved in binding to Cu(II) to generate the motif L'CuCl. Two such units are bridged by a Co(II) ion. The coordination environment around the bridging Co(II) ion contains four oxygen (two P-O units, one chelating nitrate) and two nitrogen atoms (pyridyloxy nitrogens).  相似文献   

10.
Lanthanide complexes with the Schiff base axial macrobicyclic ligand L(1) react with Zn(II) nitrate in the presence of CaH(2) to yield Ln(III)-Zn(II) heterodinuclear cryptates with the formula [Ln(NO(3))(L(1)-3H)Zn](NO(3)).xH(2)O.yMeOH. The macrobicyclic receptor L(1) is an azacryptand N[(CH(2))(2)N=CH-R-CH=N-(CH(2))(2)](3)N (R = 1,3-(2-OH-5-Me-C(6)H(2))). The crystal structures of the Pr(III), Yb(III), and Lu(III) complexes, chemical formulas [Ln(NO(3))(L(1)-3H)Zn](NO(3)).xSolv (monoclinic, C2/c, Z = 8), as well as that of [Zn(2)(L(1)-3H)](NO(3)).H(2)O (15) (triclinic, P(-)1, Z = 2), have been determined by X-ray crystallography. The ligand is helically wrapped around the two metal ions, leading to pseudo-C(3) symmetries around the metals. The Ln(III)-Zn(II) distances lie in the range 3.3252(13) to 3.2699(14) A, while the Zn(II)-Zn(II) distance in 15 amounts to 3.1037(18) A. The three five-membered chelate rings of the ligand backbone coordinating the Ln(III) ion adopt a (lambdalambdadelta)(5) (or (deltadeltalambda)(5)) conformation while the three pseudochelate rings formed by the coordination of the ligand to the Zn(II) ion adopt a (lambda'lambda'lambda')(5) (or (delta'delta'delta')(5)) conformation. Thus in the solid state the conformation of the three cations is Lambda(deltadeltalambda)(5)(delta'delta'delta')(5) or its enantiomeric form Delta(lambdalambdadelta)(5)(lambda'lambda'lambda')(5). In solution, the helicates present a time-averaged C(3) symmetry, as shown by (1)H NMR, and the conformation of the cations is described as Lambda(deltadeltadelta)(5)(delta'delta'delta')(5) (or Delta(lambdalambdalambda)(5)(lambda'lambda'lambda')(5)). The photophysical properties of the cryptates depend on the nature of the Ln(III) ion, and (L-3H)(3)(-) is revealed to be a good sensitizer for Eu(III) and Tb(III) at low temperatures, but the emission at room temperature is limited by the low energy of the ligand (3)pipi state. While Eu(III) is most effectively sensitized by the ligand triplet state, the Tb(III) ((5)D(4)) sensitization occurs via the singlet state. The quantum yield of the metal-centered luminescence in the Eu-Zn cryptate amounts to 1.05% upon ligand excitation. The low energy of the ligand (3)pipi state allows efficient sensitization of the Nd(III) and Yb(III) cryptates, which emit in the near-infrared.  相似文献   

11.
The valences of metal ions were found to play key roles in controlling the formation and structures of discrete coordination architectures in a copper and disk-shaped hexa-monodentate ligand system. When Cu(I) and Cu(II) ions react with a polydentate ligand HPDQ, a hexanuclear "double-decker" like discrete "LM(3)M(3)L" coordination architecture (CuI)(6)(HPDQ)(2)(CHCl(3))(8) (complex 1), and a "LM(3)L + LM(3)" composite structure complex (Cu(NO(3))(2))(6)(HPDQ)(3) (complex 2) are formed, respectively.  相似文献   

12.
The binding of group 12 metal ions to bis(2-methylpyridyl) sulfide (1) was investigated by X-ray crystallography and NMR. Seven structures of the chloride and perchlorate salts of Hg(II), Cd(II), and Zn(II) with 1 are reported. Hg(1)(2)(ClO(4))(2), Cd(1)(2)(ClO(4))(2), and Zn(1)(2)(ClO(4))(2).CH(3)CN form mononuclear, six-coordinate species in the solid state with 1 binding in a tridentate coordination mode. Hg(1)(2)(ClO(4))(2) has a distorted trigonal prismatic coordination geometry while Cd(1)(2)(ClO(4))(2) and Zn(1)(2)(ClO(4))(2).CH(3)CN have distorted octahedral geometries. With chloride anions, the 1:1 metal to ligand complexes Hg(1)Cl(2), [Cd(1)Cl(2)](2), and Zn(1)Cl(2) are formed. A bidentate binding mode that lacks thioether coordination is observed for 1 in the four-coordinate, distorted tetrahedral complexes Zn(1)Cl(2) and Hg(1)Cl(2). [Cd(1)Cl(2)](2) is dimeric with a distorted octahedral coordination geometry and a tridentate 1. Hg(1)Cl(2) is comprised of pairs of loosely associated monomers and Zn(1)Cl(2) is monomeric. In addition, Hg(2)(1)Cl(4) is formed with alternating chloride and thioether bridges. The distorted square pyramidal Hg(II) centers result in a supramolecular zigzagging chain in the solid state. The solution (1)H NMR spectra of [Hg(1)(2)](2+) and [Hg(1)(NCCH(3))(x)()](2+) reveal (3)(-)(5)J((199)Hg(1)H) due to slow ligand exchange found in these thioether complexes. Implications for use of Hg(II) as a metallobioprobe are discussed.  相似文献   

13.
A series of metal-organic frameworks (MOFs) based upon the ligand 2,6-diphenyl-1,4-dibenzoic acid [Ph2C6H2(CO2H)2]infinity have been prepared and characterized by X-ray crystallography. The networks exhibit a variety of topologies and coordination modes at the metal center. The reaction of the ligand with cobalt(II) nitrate or zinc(II) nitrate in methanol/pyridine results in the formation of isostructural 1-D chains [(Ph2C6H2(CO2)2)M(py)2(MeOH)]infinity, where M = Zn, Co; however, in the presence of ethanol and triethylamine, Zn(NO3)2 reacts to form a 2-D clay-like network, [(Ph2C6H2(CO2)2)Zn(EtOH)2]infinity. 2-D networks are also formed in similar reactions with copper(II) nitrate or silver(I) nitrate to give [(Ph2C6H2(CO2)(CO2H))2Cu(py)2]infinity, [(Ph2C6H2(CO2)CO2H))2Cu(py)4.2H2O](infinity), and [(Ph2C6H2(CO2)2)Ag2]infinity, respectively. The hydrogen-bonded chains formed by the ligand alone and with 4,4'-dipyridyl are also described.  相似文献   

14.
The salts of Zn(II), Cd(ii) and Hg(II) react instantaneously with Kpmf (pmf(-) = anion of N,N'-bis(pyrimidine-2-yl)formamidine, Hpmf) in THF, producing bimetallic complexes of the types [M(2)(pmf)(3)](X) (M = Zn(II), X = I(3)(-), ; M = Zn(II), X = NO(3)(-), ; M = Zn(II), X = ClO(4)(-), ; M = Cd(II), X = NO(3)(-), ; M = Cd(II), X = ClO(4)(-), ) and Hg(2)(pmf)(2)X(2) (X = Cl, ; Br, ; I, ). New tridentate and tetradentate coordination modes were observed for the pmf(-) ligands and their fluxional behaviors investigated by measuring variable-temperature (1)H NMR spectra. Complexes and , which possess only tetradentate coordination modes for the pmf(-) ligands in the solid state show larger free energy of activation (DeltaG(c)( not equal)) for the exchange than complexes and with tetradentate and/or tridentate coordination modes. Complexes and are the first dinuclear Zn(II) and Hg(II) complexes containing formamidinate ligands. Moreover, the separation between the two Hg(II) atoms are 3.4689(9), 3.4933(13) and 3.5320(10) A for complexes , respectively, similar to the sum of van der Waals radii of two Hg(II) atoms which is 3.50(7) A. All the complexes exhibit emissions and the nature of the anions hardly change the emission wavelengths of the complexes with the same metal centers. The emission bands may be tentatively assigned as intraligand (IL) pi-->pi* transitions.  相似文献   

15.
A novel M(2)L(4) tetragonal metalloprism, [(NO(3)(-))?{Cu(2)(μ-Hdpma)(4)}(NO(3))(2)](NO(3))(5) (1), was prepared from the self-assembly reaction of Cu(NO(3))(2)·3H(2)O and flexible clip-like organic ligand di(3-pyridylmethyl)amine (dpma) under acidic conditions. The cationic prismatic hollow structure of 1 hosts one nitrate anion via both metal-ligand dative bonds and electrostatic interactions. Metalloprism 1 can dissolve in water and its prismatic structure remains intact as supported by ESI-MS data. When metalloprism 1 was treated with sodium thiocyanate and sodium azide in aqueous solutions, two polymeric coordination architectures, [Cu(μ-Hdpma)(2)(NCS)(2)](NO(3))(2) (2) and [Cu(μ-dpma)(2)(μ-1,1-N(3))(μ-1,3-N(3))] (3), formed at room temperature, respectively. Polymer 2 has a two-dimensional sheet structure showing a simple rhombic 4(4)-sql topology in network connectivity, whereas polymer 3 gives a three-dimensional uninodal pcu net. The conformation of the flexible ditopic ligand is varied from a trans-trans-syn conformer in 1 to a trans-trans-anti conformer in 2 and to a trans-gauche-anti conformer in 3. The observations imply the occurrence of structural transformation from a discrete metalloprism into polymeric coordination architectures via a decoordination/rearrangement process. Magnetic studies of metalloprism 1 suggest that the two Cu(II) centers are weakly antiferromagnetically coupled. The spins communicate via the nitrate template while the Cu···O(nitrate) interactions are weak. For polymer 3, a ferromagnetically coupled system (J(2) = +17.6 cm(-1)) is operative between two Cu(II) centers bridged by end-on azidos and an antiferromagnetic coupling (J(1) = -7.7 cm(-1)) between two Cu(II) centers with end-to-end azidos. In contrast to relatively large coupling values of the reported examples, the weak ferromagnetic interaction results from insufficient spin delocalization between two Cu(II) centers.  相似文献   

16.
The Fe(II) of the binuclear Fe(II)Fe(III) active site of pig purple acid phosphatase (uteroferrin) has been replaced in turn by five M(II) ions (Mn(II), Co(II), Ni(II), Cu(II), and Zn(II)). An uptake of 1 equiv of M(II) is observed in all cases except that of Cu(II), when a second more loosely bound Cu(II) is removed by treatment with edta. The products have been characterized by different analytical procedures and by UV-vis spectrophotometry. At 25 degrees C, I = 0.100 M (NaCl), the nonenzymatic reactions with H(2)PO(4)(-) give the mu-phosphato product, and formation constants K/M(-1) show an 8-fold spread at pH 4.9 of 740 (Mn), 165 (Fe), 190 (Co), 90 (Ni), 800 (Cu), 380 (Zn). The variations in K correlate well with stability constants for the complexing of H(2)PO(4)(-) and (CH(3)O)HPO(3)(-) with M(II) hexaaqua ions. At pH 4.9 with [H(2)PO(4)(-)] > or = 3.5 mM rate constants k(obs) decrease, and an inhibition process in which a second [H(2)PO(4)(-)] coordinates to the dinuclear center is proposed. The mechanism considered accounts for most but not all of the features displayed. Thus K(1) values for the coordination of phosphate to M(II) are in the range10-60 M(-1), whereas K(2) values for the bridging of the phosphate to Fe(III) are in the narrower range 7.8-12.4. From the fits described K(i) approximately 10(3) M(-1) for the inhibition step, which is independent of the identity of M(II). Values of k(obs) decrease with increasing pH, giving pK(a) values which are close to 3.8 and independent of M(II) (Fe(II), Zn(II), Mn(II)). The acid dissociation process is assigned to Fe(III)-OH(2) to Fe(III)-OH(-), where OH(-) is less readily displaced by phosphate.  相似文献   

17.
Metal complexation studies were performed with the ditopic pyrimidine-hydrazone (pym-hyz) strand 6-hydroxymethylpyridine-2-carboxaldehyde (2-methyl-pyrimidine-4,6-diyl)bis(1-methylhydrazone) (1) and Pb(ClO(4))(2)·3H(2)O, Pb(SO(3)CF(3))(2)·H(2)O, Zn(SO(3)CF(3))(2), and Zn(BF(4))(2) to examine the ability of 1 to form various supramolecular architectures. X-ray crystallographic and NMR studies showed that coordination of the Pb(II) salts with 1 on a 2:1 metal/ligand ratio in CH(3)CN and CH(3)NO(2) resulted in the linear complexes [Pb(2)1(ClO(4))(4)] (2), [Pb(2)1(ClO(4))(3)(H(2)O)]ClO(4) (3), and [Pb(2)1(SO(3)CF(3))(3)(H(2)O)]SO(3)CF(3) (4). Two unusually distorted [2 × 2] grid complexes, [Pb1(ClO(4))](4)(ClO(4))(4) (5) and [Pb1(ClO(4))](4)(ClO(4))(4)·4CH(3)NO(2) (6), were formed by reacting Pb(ClO(4))(2)·6H(2)O and 1 on a 1:1 metal/ligand ratio in CH(3)CN and CH(3)NO(2). These grids formed despite coordination of the hydroxymethyl arms due to the large, flexible coordination sphere of the Pb(II) ions. A [2 × 2] grid complex was formed in solution by reacting Pb(SO(3)CF(3))(2)·H(2)O and 1 on a 1:1 metal/ligand ratio in CH(3)CN as shown by (1)H NMR, microanalysis, and ESMS. Reacting the Zn(II) salts with 1 on a 2:1 metal/ligand ratio gave the linear complexes [Zn(2)1(H(2)O)(4)](SO(3)CF(3))(4)·C(2)H(5)O (7) and [Zn(2)1(BF(4))(H(2)O)(2)(CH(3)CN)](BF(4))(3)·H(2)O (8). (1)H NMR studies showed the Zn(II) and Pb(II) ions in these linear complexes were labile undergoing metal ion exchange. All of the complexes exhibited pym-hyz linkages in their cisoid conformation and binding between the hydroxymethyl arms and the metal ions. No complexes were isolated from reacting either of the Zn(II) salts with 1 on a 1:1 metal/ligand ratio, due to the smaller size of the Zn(II) coordination sphere as compared to the much larger Pb(II) ions.  相似文献   

18.
金琼花  徐立军  孙静静  代永成 《化学学报》2009,67(19):2193-2198
合成了3种新的超分子配合物[Cd(H2biim)(2,2'-bipy)(NO3)2] (1), [Cu(H2biim)(2,2'-bipy)(H2O)](NO3)2 (2)和[Zn(H2biim)(2,2'-bipy)(H2O)](NO3)2 (3) (H2biim=双咪唑; 2,2'-bipy=2,2'-联吡啶), 并通过X射线单晶衍射测定了其结构. 配合物1~3均为单斜晶系, 属于P2(1)/c空间群, 在1中, Cd(II)为六配位, 它与双咪唑的2个氮原子, 联吡啶的2个氮原子和2个硝酸根的2个氧原子配位. 在2和3中, Cu(II)和Zn(II)均为五配位的, 它们与双咪唑的2个氮原子、2,2'-联吡啶的两个氮原子和一个水分子配位. 1~3的对称单元均通过双咪唑、硝酸根和水之间形成的氢键R21(7), R21(4) 和R44(18)构筑了1D链状超分子.  相似文献   

19.
The synthesis and characterization of the first thiosemicarbazone-lumazine (TSCLMH=the thiosemicarbazone of 6-acetyl-1,3,7-trimethyllumazine) hybrid ligand is reported. The influence of the conformation of this compound on its energy and the atomic contribution to the molecular orbitals have been theoretically investigated. Ni(II), Cu(I), Zn(II), and Cd(II) complexes of this ligand have been synthesized and characterized by elemental analysis, thermogravimetric studies, IR, 1H, 13C, and 15N NMR, and UV-vis-NIR spectroscopy, magnetic measurements, and X-ray crystallography. Four types of coordination modes for the ligand may be predicted: (a) double bidentate; (b) tetradentate; (c) tridentate; (d) bidentate. Structures of representative complexes of types a, b, and d have been determined by X-ray crystallography. In the [Cu(TSCLMH)]2(ClO4)2 complex, TSCLMH acts as a doubly bidentate bridging ligand forming a dimer with a Cu...Cu distance of 2.876 A. The geometry around the metal ion is trigonally distorted tetrahedral with a relatively long (four-atom) bridge between the metal centers instead of the shorter, mainly single atom, bridges present in other thiosemicarbazone derivatives complexes. In the [Cd(NO3)2(TSCLMH)(EtOH)] complex, the metal ion displays eight-coordinated geometry with the TSCLMH ligand acting in a tetradentate planar fashion and two nitrate anions, one monodentate and the other bidentate. The coordination polyhedron in [Cd(TSCLM)2(H2O)].MeOH.2H2O is a square pyramid with two monoanionic ligands acting as bidentate NS donors and a water molecule completing the coordination sphere. Fluorescence spectroscopic properties of TSCLMH have been studied as well as the changes in position and intensity of fluorescence bands caused by the complexation with different metal ions (Ni2+, Cu+, Zn2+, Cd2+).  相似文献   

20.
The reactions of nitric oxide and carbon monoxide with water soluble iron and cobalt porphyrin complexes were investigated over the temperature range 298-318 K and the hydrostatic pressure range 0.1-250 MPa [porphyrin ligands: TPPS = tetra-meso-(4-sulfonatophenyl)porphinate and TMPS = tetra-meso-(sulfonatomesityl)porphinate]. Large and positive DeltaS(double dagger) and DeltaV(double dagger) values were observed for NO binding to and release from iron(III) complexes Fe(III)(TPPS) and Fe(III)(TMPS) consistent with a dissociative ligand exchange mechanism where the lability of coordinated water dominates the reactivity with NO. Small positive values for Delta and Delta for the fast reactions of NO with the iron(II) and cobalt(II) analogues (k(on) = 1.5 x 10(9) and 1.9 x 10(9) M(-1) s(-1) for Fe(II)(TPPS) and Co(II)(TPPS), respectively) indicate a mechanism dominated by diffusion processes in these cases. However, reaction of CO with the Fe(II) complexes (k(on) = 3.6 x 10(7) M(-1) s(-1) for Fe(II)(TPPS)) displays negative Delta and Delta values, consistent with a mechanism dominated by activation rather than diffusion terms. Measurements of NO dissociation rates from Fe(II)(TPPS)(NO) and Co(II)(TPPS)(NO) by trapping free NO gave k(off) values of 6.3 x 10(-4) s(-1) and 1.5 x 10(-4) s(-1). The respective M(II)(TPPS)(NO) formation constants calculated from k(on)/k(off) ratios were 2.4 x 10(12) and 1.3 x 10(13) M(-1), many orders of magnitude larger than that (1.1 x 10(3) M(-1)) for the reaction of Fe(III)(TPPS) with NO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号