首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis and evaluation of a molecularly imprinted polymer (MIP) as a selective matrix solid-phase dispersion (MSPD) sorbent, coupled with high-performance liquid chromatography for the efficient determination of chloramphenicol (CAP) in fish tissues are studied. The polymer was prepared using CAP as the template molecule, vinylpyridine as the functional monomer and ethylene glycol dimethacrylate as the cross-linking monomer, and sodium dodecyl sulfate as the surfactant in the presence of water as a solvent by miniemulsion polymerization. The CAP-imprinted polymers and nonimprinted polymers (NIPs) were characterized by Fourier transform IR spectroscopy, scanning electron microscopy, and static adsorption experiments. The CAP-imprinted material prepared showed high adsorption capacity, significant selectivity, and good site accessibility. The maximum static adsorption capacity of the CAP-imprinted and the NIP material for CAP was 78.4 and 59.9 mg g(-1), respectively. The relative selectivity factors of this CAP-imprinted material were larger than 1.9. Several parameters influencing the MSPD process were optimized. Finally, the CAP-imprinted polymers were used as the sorbent in MSPD to determine CAP in three kinds of fishes and resulted in satisfactory recovery in the range 89.8-101.43%. CAP-imprinted polymer as a sorbent in MSPD is better than C18 and attapulgite in terms of both recovery and percent relative standard deviation. The baseline noise was measured from a chromatogram of a blank fish sample which was treated after the MSPD procedure using CAP-imprinted polymer as a sorbent. Signal values of 3 times the noise (signal-to-noise ratio of 3) and 10 times the noise (signal-to-noise ratio of 10) were used to calculate the limit of detection and the limit of quantitation of the calibration curve. The limit of detection for CAP was 1.2 ng g(-1) and the limit of quantitation was 3.9 ng g(-1).  相似文献   

2.
A simple, sensitive and reproducible molecularly imprinted solid-phase extraction (MISPE) coupled with high performance liquid chromatographic method was developed for monitoring tilmicosin in feeds. The polymers were prepared using tylosin as mimic template molecule, methacrylic acid as functional monomer and ethylene glycol dimethacrylate as cross-linking monomer, and chloroform as a solvent by bulk polymerization. Under the optimum MISPE conditions, the novel polymer sorbent can selectively extract and enrich tilmicosin from variety of feeds. The MISPE cartridge was better than non-imprinted, C18 and HLB cartridges in terms of both recovery and precision. Mean recoveries of tilmicosin from five kinds of feeds spiked at 1, 10 and 50 mg kg−1 ranged from 76.9% to 95.6%, with intra-day and inter-day relative standard deviation less than 7.6%. The linearity was ranged from 1.0 to 100 mg L−1 for matrix standard solution (r = 0.9990). The limit of detection was approximately 0.35 mg kg−1 and the limit of quantification was approximately 0.98 mg kg−1. There was cleaner chromatogram by using MISPE than C18 and HLB SPE.  相似文献   

3.
In this work, a novel method is described for the determination of bromhexine in biological fluids using molecularly imprinted solid-phase extraction as the sample cleanup technique combined with high performance liquid chromatography (HPLC). The water-compatible molecularly imprinted polymers (MIPs) were prepared using methacrylic acid as functional monomer, ethylene glycol dimethacrylate as cross-linker, chloroform as porogen and bromhexine as the template molecule. The novel imprinted polymer was used as a solid-phase extraction sorbent for the extraction of bromhexine from human serum and urine. Various parameters affecting the extraction efficiency of the polymer have been evaluated. The optimal conditions for molecularly imprinted solid-phase extraction (MISPE) consisted of conditioning 1 mL methanol and 1 mL of deionized water at neutral pH, loading of 5 mL of the water sample (25 μg L−1) at pH 6.0, washing using 2 mL acetonitrile/acetone (1/4, v/v) and elution with 3× 1 mL methanol/acetic acid (10/1, v/v). The MIP selectivity was evaluated by checking several substances with similar molecular structures to that of bromhexine. Results from the HPLC analyses showed that the calibration curve of bromhexine using MIP from human serum and urine is linear in the ranges of 0.5-100 and 1.5-100 μg L−1 with good precisions (3.3% and 2.8% for 5.0 μg L−1), respectively. The recoveries for serum and urine samples were higher than 92%.  相似文献   

4.
In this study, 1-allyl-3-octylimidazolium tetrachloroferrate ionic liquid was first synthesized. Molecularly imprinted polymer was prepared by suspension polymerization using 1-allyl-3-octylimidazolium tetrachloroferrate as functional monomer and chlorogenic acid as template molecule. The polymer was characterized by Fourier transformed infrared spectroscopy and scanning electron microscopy. Thermal stability of the polymer was investigated. The solid-phase extraction method based on magnetic molecularly imprinted polymer was developed for gallic acid, protocatechuic acid, caffeic acid, chlorogenic acid, p-coumaric acid, and ferulic acid. The sample pH, the type and volume of stripping solution, sorbent amount, and extraction time were optimized for phenolic acids. The analysis of phenolic acids after extraction was carried out using high-performance liquid chromatography with UV detection. Limit of detection, limit of quantification, linear range, correlation coefficient, and reproducibilities of within-day and between-day for phenolic acids were determined. The residues of phenolic acids in apple samples were successfully detected by the developed method. Recovery of standard spiked apple samples was ≥81 for all the phenolic acids.  相似文献   

5.
Zhou WH  Guo XC  Zhao HQ  Wu SX  Yang HH  Wang XR 《Talanta》2011,84(3):777-782
In this work, a highly selective sample cleanup procedure that combining molecular imprinting technique (MIT) and solid phase extraction (SPE) was developed for the isolation of domoic acid (a fascinating marine toxin) from seafood samples. The molecular imprinting polymer (MIP) for domoic acid was prepared using 1,3,5-pentanetricarboxylic acid as the template molecule instead of domoic acid. 4-Vinyl pyridine was used as the functional monomer and ethylene glycol dimethacrylate was used as the cross-linking monomer. The obtained imprinted polymer showed high affinity to domoic acid and was used as selective sorbent for the SPE of domoic acid from seafood samples. An off-line molecularly imprinted solid phase extraction (MISPE) method followed by high-performance liquid chromatography (HPLC) with diode-array detection for the detection of domoic acid was also established. Good linearity was obtained from 0.5 mg L−1 to 25 mg L−1 (R2 > 0.99) with a quantitation limit of 0.1 mg L−1, which was sufficient to determine domoic acid at the maximum level permitted by several authorities. The mean recoveries of domoic acid from mussel extracts were 93.4-96.7%. It was demonstrated that the proposed MISPE-HPLC method could be applied to direct determination of domoic acid from seafood samples.  相似文献   

6.
The development of an easy-to-use, rapid, robust and inexpensive technique is required which can measure the basal concentration of uric acid (UA) lower than 1.0 x 10(-7)M ( approximately 0.017 mgL(-1)) in biological samples to attend the problem of hypouricemia. In the present work an artificial receptor for UA, silica gel-bonded molecularly imprinted polymer (MIP), was used as a sorbent for molecularly imprinted solid-phase extraction (MISPE) in column chromatography. The use of a sensor based on a MIP-modified hanging mercury drop electrode (HMDE), as reported from our laboratory, could estimate UA with detection limit as low as 0.024 mgL(-1) under the optimized conditions of differential pulse, cathodic stripping voltammetric (DPCSV) measurement. However, in the current investigation, with the use of the combination of MISPE followed by detection with a MIP-based HMDE sensor, the minimum detectable concentration could go down to 0.0008 mgL(-1) (RSD=0.63%, S/N=3). The same MIP receptor for both MISPE and the corresponding sensor was able to enhance the preconcentration of analyte substantially so as to attain the desired level of sensitivity; and that to without any interference (cross-reactivity) from other structurally related analogues including the major interferent like ascorbic acid prevalent in the aqueous environment of biological samples.  相似文献   

7.
8.
A method for molecularly imprinted solid-phase extraction (MISPE) of the fungicide pyrimethanil from wine samples has been investigated. The molecular imprinted polymer was obtained by iniferter-mediated grafting on porous chloromethylated polystyrene beads, using methacrylic acid as the functional monomer and ethylene glycol dimethacrylate as the cross-linker. The imprinted beads were evaluated for use as a solid-phase extraction sorbent, in order to develop the extraction protocol in aqueous standards and red wine samples. The optimised extraction protocol resulted in a reliable MISPE method suitable for HPLC analysis (stationary phase: Cromolith Performance C18 column, 100 mm x 4.6 mm; mobile phase: acetonitrile-water (3:2, v/v), flow-rate: 1.00 ml/min; detection 270 nm). It was selective for pyrimethanil and the related pyrimidinic fungicides cyprodinil and mepanipyrim, while the non-pyrimidinic fungicides benalaxyl, chlozolinate, furalaxyl, iprodione, metalaxyl, nuarimol, procymidone and vinclozolin were not extracted. Recoveries performed on a wine matrix spiked with pyrimethanil at three different concentration levels were reproducible and were in good agreement with the recoveries performed on buffer, coming out between 80 and 90% (85+/-7.0% at 0.50 microg/ml, 79+/-1.6% at 2.0 microg/ml and 87+/-5.6% at 20 microg/ml). Preconcentration and quantitative extraction of pyrimethanil from wine samples was shown to be feasible down to 0.1 microg/ml.  相似文献   

9.
10.
Organophosphorus insecticides are widely employed in agriculture, and residues of them can remain after harvesting or storage. Pesticide residue control is an important task for ensuring food safety. Common chromatographic methods used in the determination of pesticide residues in food require clean-up and concentration steps prior to quantitation. While solid-phase extraction has been widely employed for this purpose, there is a need to improve selectivity. Due to their inherent biomimetic recognition systems, molecularly imprinted polymers (MIP) allow selectivity to be enhanced while keeping the costs of analysis low. In this work, a MIP that was designed to enable the selective extraction of fenitrothion (FNT) from tomatoes was synthesized using a noncovalent imprinting approach. The polymer was prepared using methacrylic acid as functional monomer and ethyleneglycol dimethacrylate as crosslinking monomer in dichloromethane (a porogenic solvent). The polymer was characterized by Fourier transform infrared spectroscopy, solid-state nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), and nitrogen sorption porosimetry. The pore structure and the surface area were evaluated using the BET adsorption method. To characterize the batch rebinding behavior of the MIP, the adsorption isotherm was measured, allowing the total number of binding sites, the average binding affinity and the heterogeneity index to be established. A voltammetric method of quantifying FNT during the molecularly imprinted solid-phase extraction (MISPE) studies was developed. The polymer was placed in extraction cartridges which were then used to clean up and concentrate FNT in tomato samples prior to high-performance liquid chromatographic quantitation. The material presented a medium extraction efficiency of 59% (for analyses performed with three different cartridges on three days and a fortification level of 5.0 μg g−1) and selectivity when used in the preparation of tomato samples, and presented the advantage that the polymer could be reused several times after regeneration. Figure    相似文献   

11.
12.
13.
14.
制备了白藜芦醇的分子印迹聚合物,用聚四氟乙烯管作为微固相萃取柱,连接在流动注射系统的八通阀上,对白藜芦醇进行富集和分离;经甲醇和乙酸混合洗脱液(9:1,V/V)在线洗脱后与酸性KMnO4发生化学发光反应.测定白藜芦醇的线性范围2.5×10-7~6.1×10-5g/mL,方法的检出限为(3σ)8×10-8g/mL,11次...  相似文献   

15.
A highly sensitive and selective method for simultaneous determination of some hydroxyl group-containing endocrine disruptors, including bisphenol A (BPA), bisphenol B (BPB), bisphenol E (BPE), bisphenol F (BPF) and 4-nonylphenol (4-NP), was developed. The method consists of precolumn derivatization of the analytes, solid-phase extraction (SPE) and subsequent chromatographic analysis by high-performance liquid chromatography (HPLC) with fluorescence detection. 4,4'-Cyclohexylidenebisphenol (BPZ) was used as an internal standard. Derivatization was carried out using 4-(4,5-diphenyl-1H-imidazol-2-yl)benzoyl chloride (DIB-Cl) as a label. Parameters of the derivatization reaction (temperature, time, concentration of reagent, stability, etc.) and of the solid-phase extraction (recovery, solvent, etc.) were studied in detail. Detection limits of compounds studied in standard solutions ranged from 0.08-1.3 ppb (ng/ml). The proposed method was successfully applied to plastic samples; BPA was found in both polycarbonate and polyvinyl chloride plastics, while 4-NP was found in plastics made of polyvinyl chloride and another polymer.  相似文献   

16.
17.
A simple and sensitive procedure for the measurement of N-methylisoquinolinium ion (NMIQ+), a putative neurotoxin, was devised using high-performance liquid chromatography (HPLC) with fluorescence detection. Separation of NMIQ+ was carried out by gel filtration and reversed-phase HPLC on a column of hydrophilic polymer gels (Asahipak GS-302H). The method was sensitive enough to measure 50 fmol of NMIQ+. Uptake of NMIQ+ into rat striatal slices was confirmed by this method.  相似文献   

18.
19.
20.
Xiong Y  Zhou H  Zhang Z  He D  He C 《The Analyst》2006,131(7):829-834
A molecularly imprinted polymer solid phase extraction (MISPE) method combined with flow-injection chemiluminescence (FI-CL) for the determination of residual tetracycline (TC) in fish samples is presented. The molecularly imprinted polymer (MIP) of TC was synthesized and particles of this MIP were packed into a polytetrafluoroethylene (PTFE) tube, which was connected into the sampling loop of an eight-way injection valve and served as the MISPE column for on-line selective adsorption of TC. The eluent (CH3CN : HNO3 (0.01 mol L(-1)) = 4 ratio 1, v ratio v) was used for extracting the adsorbed TC, which could be detected by its good enhancing effect on the CL reaction between Ce(iv) and rhodamine B. The CL intensity is linear to TC concentration in the range from 4 x 10(-9) to 4 x 10(-7) g mL(-1). The detection limit is 1 x 10(-9) g mL(-1) (3 sigma) and the relative standard deviation is 2.4% (n = 9). The conditions of preconcentration, extraction and CL reaction were carefully studied. The selectivity experiment shows that the selectivity and sensitivity of the CL method could be improved greatly when MIP was used as a recognition material in SPE. However, the MISPE column interacted indiscriminately with oxytetracycline (OTC) with a 49 +/- 2% binding. An intermediate differential pulsed elution (DPE) step using 3% acetic acid as eluent was employed to remove OTC and other interfering substances. The proposed MISPE-CL method has been applied successfully to the determination of TC in fish samples. At the same time, the binding characteristics of the polymer to tetracycline were evaluated by batch and dynamic methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号