首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel approach was developed to study the relationship between DNA sequences and DNA‐templated silver nanoclusters (DNA‐Ag NCs) in detail by using an ordinary DNA strand as an example. Three kinds of Ag NCs are formed by using the DNA strand as a scaffold. By dividing the DNA template into several parts according to their different affinities to Ag+, it was found that the fluorescence properties of DNA‐Ag NCs are related to not only the sequences but also to the position of different parts in the template, which provides a more efficient approach to obtain DNA‐Ag NCs with required photoluminescence properties and may ultimately contribute to the targeted synthesis of DNA‐Ag NCs.  相似文献   

2.
Silver nanoclusters (Ag NCs) templated with DNAs have attracted much attention as novel fluorophores because of their convenient emission tunability by the sequence and length of the template DNAs. However, the precise production of Ag NCs in a site-specific manner still remains a challenge to attain highly selective and label-free DNA recognition. Here we exploited the availability of a gap site in DNA duplexes as a new scaffold for the synthesis of Ag NCs. Compared to the commonly used DNA templates for the creation of Ag NCs, the gap site in DNA duplexes was found to facilitate the rapid formation of the fluorescent Ag NCs without sacrifice of their bright emission and excellent stability. We found that fluorescent Ag NCs were highly selectively formed when cytosine faced toward the gap site in DNA duplexes, and they were in situ utilized as readout by signal-on manner for the DNA mutation assays. This base-selective growth of the fluorescent Ag NCs at the gap site would find promising applications in practical detection of single nucleotide polymorphism (SNP) and construction of DNA-based functional sensors with label-free and cost-effective merits.  相似文献   

3.
Herein we report that few‐atom silver nanoclusters (Ag NCs) can be effective energy acceptors for upconversion phosphors (UCPs). A luminescence resonance energy transfer (LRET) probe for biothiols was constructed by decorating UCPs with dithiol‐stabilized Ag NCs. Owing to the unique properties of ultrasmall NCs, properties which bridge the gap between those of small molecules and those of nanoparticles, the use of approximately 1.9 nm Ag NCs as energy acceptors endows the probe with high energy‐transfer efficiency, good biocompatibility, and flexibility. The UCP–Ag NC nanoprobe enables rapid and robust target assay in solutions. It was also uploaded into living cells and used to detect intracellular biothiol levels with high discrimination. Moreover, the probe shows transportability in vivo and can be used for tissue imaging. The facile growth of few‐atom metal NCs on diverse templates may enable the development of various nanoprobes combining UCPs and metal NCs.  相似文献   

4.
Lan GY  Chen WY  Chang HT 《The Analyst》2011,136(18):3623-3628
A simple strategy for the preparation of strongly fluorescent and stable DNA-Cu/Ag NCs from reduction of AgNO(3) and Cu(NO(3))(2) by NaBH(4) in the presence of DNA having a sequence 5'-CCCTTAATCCCC-3' has been demonstrated. Fluorescence, absorption, X-ray photoelectron spectroscopy (XPS), and electrospray ionization-mass spectrometry (ESI-MS) measurements have been applied to the characterization of the DNA-Cu/Ag NCs. The ESI-MS data reveal that each DNA-Cu/Ag NC contained 2 Ag and 1 Cu atoms. The interactions among DNA with the Ag and Cu atoms are further supported by the data of low-temperature fluorescence. In the presence of Cu(2+) ions, the reaction time is 1.5 h, which is much shorter than that (120 h) for the preparation of Ag-DNA NCs that are prepared in a mixture of AgNO(3), NaBH(4) and DNA without containing Cu(2+) ions. Relative to the DNA-Ag NCs, the DNA-Cu/Ag NCs have greater fluorescence (quantum yield 51.2% vs. 11.5%). The DNA-Cu/Ag NCs are highly sensitive and selective for the detection of single-stranded DNA binding protein (SSB), with a linear range 1-50 nM and a limit of detection 0.2 nM at a signal-to-ratio of 3.  相似文献   

5.
The finding of new metal alloyed nanocrystals (NCs) with high catalytic activity and low cost to replace PtRu NCs is a critical step toward the commercialization of fuel cells. In this work, a simple cation replacement reaction was utilized to synthesize a new type of ternary Fe(1-x)PtRu(x) NCs from binary FePt NCs. The detailed structural transformation from binary FePt NCs to ternary Fe(1-x)PtRu(x) NCs was analyzed by X-ray absorption spectroscopy (XAS). Ternary Fe(35)Pt(40)Ru(25), Fe(31)Pt(40)Ru(29), and Fe(17)Pt(40)Ru(43) NCs exhibit superior catalytic ability to withstand CO poisoning in methanol oxidation reaction (MOR) than do binary NCs (FePt and J-M PtRu). Also, the Fe(31)Pt(40)Ru(29) NCs had the highest alloying extent and the lowest onset potential among the ternary NCs. Furthermore, the origin for the superior CO resistance of ternary Fe(1-x)PtRu(x) NCs was investigated by determining the adsorption energy of CO on the NCs' surfaces and the charge transfer from Fe/Ru to Pt using a simulation based on density functional theory. The simulation results suggested that by introducing a new metal into binary PtRu/PtFe NCs, the anti-CO poisoning ability of ternary Fe(1-x)PtRu(x) NCs was greatly enhanced because the bonding of CO-Pt on the NCs' surface was weakened. Overall, our experimental and simulation results have indicated a simple route for the discovery of new metal alloyed catalysts with superior anti-CO poisoning ability and low usage of Pt and Ru for fuel cell applications.  相似文献   

6.
Several DNA templates with the sequence 5′‐T n TAACCCCTAACCCCT ‐3′ (n = 0, 15, 30, and 45) were used to prepare DNA template–silver nanoclusters (DNA –Ag NCs ). The T n sequence acts as a recognition element for Hg2+, while the rest of the sequence acts as a template for DNA –Ag NCs . At pH 3.0, the fluorescence intensity of DNA –Ag NCs is enhanced by ATP , and the enhanced fluorescence is quenched by Hg2+. The length of polyT shows a slight effect on the sensitivity for the detection of Hg2+ but almost no effect on the optical properties of DNA –Ag NCs . The fluorescence response of DNA –Ag NCs (T15‐DNA –Ag NCs ) vs. Hg2+ concentration shows two linear ranges over 10–100 and 100–1000 nM , mainly because of the fluorescence quenching due to DNA conformational changes through T–Hg2+–T coordination and the formation of an amalgam with Ag NCs , respectively. The sensitivity of the T15‐DNA –Ag NC probe was validated through the analysis of Hg2+ in spiked pond water. Based on the switch‐on and switch‐off fluorescence properties of T15‐DNA –Ag NCs , an IMPLICATION logic gate was fabricated using the concentrations of ATP and Hg2+ as inputs and the fluorescence intensity at 585 nm as output.  相似文献   

7.
以左旋多巴胺(L-3,4-dihydroxyphenylalanine,DOPA)为稳定剂,采用日光辐射光还原法,合成了强荧光发射的银纳米簇(silver nanoclusters,Ag NCs)。透射电镜分析表明,所合成的Ag NCs表现亚纳米非晶态结构。Ag NCs在可见-近红外波长范围内(400~750 nm)有明显光吸收带,最大荧光激发和发射峰分别为550和630 nm,荧光量子产率为2.3%(相对于罗丹明B)。Ag NCs的荧光强度与合成时的日光辐射时间、DOPA浓度以及pH值等因素有关。进一步优化了合成Ag NCs的条件。基于荧光猝灭原理,所合成的DOPA功能化的Ag NCs能选择性地灵敏响应Fe3+。修饰在Ag NCs表面的配体DOPA能够选择性地结合Fe3+,导致Ag NCs显著聚集,伴随荧光猝灭。Ag NCs具有的较高量子产率和红荧光发射特性,有利于提高Fe3+的分析灵敏度。  相似文献   

8.
以左旋多巴胺(L-3,4-dihydroxyphenylalanine,DOPA)为稳定剂,采用日光辐射光还原法,合成了强荧光发射的银纳米簇(silvernanoclusters,AgNCs)。透射电镜分析表明,所合成的AgNCs表现亚纳米非晶态结构。AgNCs在可见-近红外波长范围内(400~750nm)有明显光吸收带,最大荧光激发和发射峰分别为550和630nm,荧光量子产率为2.3%(相对于罗丹明B)。AgNCs的荧光强度与合成时的日光辐射时间、DOPA浓度以及pH值等因素有关。进一步优化了合成AgNCs的条件。基于荧光猝灭原理,所合成的DOPA功能化的AgNCs能选择性地灵敏响应Fe3+。修饰在AgNCs表面的配体DOPA能够选择性地结合Fe3+,导致AgNCs显著聚集,伴随荧光猝灭。AgNCs具有的较高量子产率和红荧光发射特性,有利于提高Fe3+的分析灵敏度。  相似文献   

9.
CpG dinucleotide in DNA has a great tendency to mutate to TpG dinucleotide and this transition can cause some serious diseases. In this work, fluorescent Ag nanoclusters (Ag NCs) were employed as useful inorganic fluorophores for the potential of selectively discriminating TpG dinucleotide from CpG dinucleotide. Opposite the base Y of interest in YpG dinucleotide (Y = C or T), a bulge site was introduced so as to make the base Y to be unpaired and ready for Ag+ binding. Such that the unpaired Y and context base pairs can provide a specific space suitable for creating fluorescent Ag NCs. We found that in comparison with CpG dinucleotide, TpG dinucleotide is much more efficient in growing fluorescent Ag NCs. Therefore, mutation of CpG dinucleotide to TpG can be identified by a turn-on fluorescence response and a high selectivity. More interestingly, Ag NCs exhibit a better performance in the TpG recognition over the other dinucleotides (Y = A and G) than the previously used organic fluorophores. Additionally, the effectiveness of the bulge site design in discriminating these dinucleotides was evidenced by control DNAs having the abasic site structure. We expect that a practical method for TpG dinucleotide recognition with a high selectivity can be developed using the bulge site-grown fluorescent Ag NCs as novel probes.  相似文献   

10.
Three new anthracene derivatives [2‐chloro‐9,10‐dip‐tolylanthracene (DTACl), 9,10‐dip‐tolylanthracene‐2‐carbonitrile (DTACN), and 9,10‐di(naphthalen‐1‐yl)anthracene‐2‐carbonitrile (DNACN)] were synthesized as triplet acceptors for low‐power upconversion. Their linear absorption, single‐photon‐excited fluorescence, and upconversion fluorescence properties were studied. The acceptors exhibit high fluorescence yields in DMF. Selective excitation of the sensitizer PdIIoctaethylporphyrin (PdOEP) in solution containing DTACl, DTACN, or DNA‐CN at 532 nm with an ultralow excitation power density of 0.5 W cm?2 results in anti‐Stokes blue emission. The maximum upconversion quantum yield (ΦUC=17.4 %) was obtained for the couple PdOEP/DTACl. In addition, the efficiency of the triplet–triplet energy transfer process was quantitatively studied by quenching experiments. Experimental results revealed that a highly effective acceptor for upconversion should combine high fluorescence quantum yields with efficient quenching of the sensitizer triplet.  相似文献   

11.
Lead‐free halide perovskite nanocrystals (NCs) have drawn wide attention for solving the problem of lead perovskites toxicity and instability. Herein, we synthesize the direct band gap double perovskites undoped and Ag‐doped Cs2NaInCl6 NCs by variable temperature hot injection. The Cs2NaInCl6 NCs have little photoluminescence because of dark self‐trapped excitons (STEs). The dark STEs can be converted into bright STEs by doping with Ag+ to produce a bright yellow emission, with the highest photoluminescence quantum efficiency of 31.1 %. The dark STEs has been directly detected experimentally by ultrafast transient absorption (TA) techniques. The dynamics mechanism is further studied. In addition, the Ag‐doped NCs show better stability than the undoped ones. This result provides a new way to enhance the optical properties of lead‐free perovskites NCs for high‐performance light emitters.  相似文献   

12.
A simple turn-on and homogeneous aptasensor, which relies on target induced formation of silver nanoclusters (Ag NCs), was developed for the determination of platelet-derived growth factor B-chain homodimer (PDGF-BB). The aptasensor contains two hairpin DNA probes termed as P1 and P2. P1 consists of the aptamer sequence of PDGF-BB. Meanwhile, P2 contains the Ag NCs nucleation sequence, which is blocked by the hairpin stem region. P1 and P2 can co-exist metastably in the absence of PDGF-BB and maintain hairpin structure. However, in the presence of PDGF-BB, the binding of PDGF-BB with aptamer will result in the hybridization between P1 and P2, and release the Ag NCs nucleation sequence. In this case, Ag NCs can be formed via the reduction of Ag+ by NaBH4. By monitoring the increase in fluorescence intensity, we could detect the target protein with high sensitivity. The detection limit of this aptasensor is 0.37 nM, which is comparable with that of other reported aptasensors. Furthermore, this proposed aptasensor shows high selectivity toward its target protein. Thus, the proposed aptasensor based on target induced formation of Ag NCs could be used as a sensitive and selective platform for the detection of target protein.  相似文献   

13.
Singlet oxygen(1 O2) plays an important role in various applications, such as in the photodynamic therapy(PDT) of cancers,photodynamic inactivation of microorganisms, photo-degradation of toxic compounds, and photo-oxidation in synthetic chemistry. Recently,water-soluble metal nanoclusters(NCs) have been utilized as photosensitizers for the generation of highly reactive 1 O2 because of their high water solubility, low toxicity, and surface functionalizability for targeted substances. In the case of metal NC-based photosensitizers, the photo-physical properties depend on the core size of the NCs and the core/ligand interfacial structures. A wide range of atomically precise gold NCs have been reported; however, reports on the synthesis of atomically precise silver NCs are limited due to the high reactivity and low photostability(i.e., easy oxidation) of Ag NCs. In addition, there have been few reports on what kinds of metal NCs can generate large amounts of 1 O2. In this study, we developed a new one-pot synthesis method of water-soluble Ag7(MBISA)6(MBISA= 2-mercapto-5-benzimidazolesulfonic acid sodium salt) NCs with highly efficient 1 O2 generation ability under the irradiation of white light emitting diodes(LEDs). The molecular formula and purity were determined by electrospray ionization mass spectrometry and gel electrophoresis. To the best of our knowledge, this is the first report on atomically precise thiolate silver clusters(Agn(SR)m) for efficient 1 O2 generation under visible light irradiation. The 1 O2 generation efficiency of Ag7(MBISA)6 NCs was higher than those of the following known water-soluble metal NCs: bovine serum albumin(BSA)-Au25 NCs,BSA-Ag8 NCs, BSA-Ag14 NCs,Ag25(dihydrolipoic acid)14 NCs,Ag35(glutathione)18 NCs,and Ag75(glutathione)40 NCs. The metal NCs examined in this study showed the following order of 1 O2 generation efficiency under white light irradiation: Ag7(MBISA)6 BSA-Ag14 Ag75(SG)40 Ag35(SG)18 BSA-Au25 BSA-Ags(not detected) and Ag2 s(DHLA)14(not detected). For further improving the 1 O2 generation of Ag7(MBISA)6 NCs, we developed a novel fluorescence resonance energy transfer(FRET) system by conjugating Ag7(MBISA)6 NCs with quinacrine(QC)(molar ratio of Ag NCs to QC is 1 : 0.5). We observed the FRET process,from QC to Ag7(MBISA)6 NCs,occurring in the conjugate. That is,the QC works as a donor chromophore,while the Ag NCs work as an acceptor chromophore in the FRET process. The FRET-mediated process caused a 2.3-fold increase in 1 O2 generation compared to that obtained with Ag7(MBISA)6 NCs alone. This study establishes a general and simple strategy for improving the PDT activity of metal NC-based photosensitizers.  相似文献   

14.
A facile chemical synthetic route was developed to prepare near-infrared fluorescent trypsin-stabilized Ag nanoclusters (Try-Ag NCs). The fluorescence emission wavelength of the produced Try-Ag NCs is tunable by simple adjusting pH value of the synthesis system, and the Try-Ag NCs offer a symmetric fluorescent excitation and emission peak. The fluorescence of Try-Ag NCs remains constant in the presence of various ions and molecules, and it can be effectively quenched by 1,4-dihydronicotinamide adenine dinucleotide (NADH) instead of its oxidized forms nicotinamide adenine dinucleotide (NAD+). This property enables the Try-Ag NCs to be a novel analytical platform to monitor biological reaction involved with NADH. In this work, the Try-Ag NCs was also applied to analyze ethanol based on the generation of NADH which was the product of NAD+ and ethanol in the catalysis of alcohol dehydrogenase. And the proposed platform allowed ethanol to be determined in the range from 10 to 300 μmol/L with 5 μmol/L detection limit.  相似文献   

15.
A strategy to expand anti‐Stokes shifting from the far‐red to deep‐blue region in metal‐free triplet–triplet annihilation upconversion (TTA‐UC) is presented. The method is demonstrated by in vivo titration of the photorelease of an anticancer prodrug. This new TTA system has robust brightness and the longest anti‐Stokes shift of any reported TTA system. TTA core–shell‐structured prodrug delivery capsules that benefit from these properties were developed; they can operate with low‐power density far‐red light‐emitting diode light. These capsules contain mesoporous silica nanoparticles preloaded with TTA molecules as the core, and amphiphilic polymers encapsulating anticancer prodrug molecules as the shell. When stimulated by far‐red light, the intense TTA upconversion blue emission in the system activates the anticancer prodrug molecules and shows effective tumor growth inhibition in vivo. This work paves the way to new organic TTA upconversion techniques that are applicable to in vivo photocontrollable drug release and other biophotonic applications.  相似文献   

16.
Er3+ doped SrTiO3 ultrafine powders were prepared by solid state reaction in a molten NaCl flux. The structural properties were characterized by X-ray diffraction, field emission scanning electron microscopy, and Fourier transform infrared spectroscopy. The Stokes emission spectra of Er3+ in SrTiO3:Er3+ ranging from green to near infrared region were investigated under 514.5 nm laser excitation. The green and redupconverted luminescence spectra of Er3+ were measured under excitation into the 4I9=2 level by 785 nm laser. The upconversion mechanisms were studied in detail through laser power dependence and Er3+ ion concentration dependence of upconverted emissions, and results show that excited state absorption and energy transfer process are the possible mechanisms for the upconversion. The upconversion properties indicate that SrTiO3:Er3+ may be used in upconversion phosphors.  相似文献   

17.
Trivalent lanthanide ions (Ln(3+)) doped inorganic nanocrystals (NCs) have currently attracted reviving interest and come to the forefront in nanophotonics owing to their potential applications in diverse fields such as luminescent biodetection and bioimaging. As an alternative to conventional biolabels, Ln(3+)-doped NCs show superior features including large stokes shift, multicolor fine-tuning, narrow emission band widths, high photostability, and low toxicity. Particularly, the long-lived luminescence and distinct upconversion (UC) of Ln(3+)-doped NCs are desirable for various bioapplications. The long-lived luminescence of Ln(3+) combined with time-resolved technique can efficiently suppress the interference from short-lived background, resulting in a high signal-to-noise ratio (S/N) and background-free measurements. Near-infrared excited UC emissions of Ln(3+) can bring no autofluorescence and no photodamage to cells or tissues, and thus UC NCs have been regarded as one of the most useful in vivo optical contrast agents. In this review, we outline the most recent development of Ln(3+)-doped NCs as biolabels from the controlled synthesis and surface functionalization of NCs to their bioapplications in heterogeneous and homogeneous biodetection as well as in vitro and in vivo bioimaging.  相似文献   

18.
Reversible emission color switching of triplet–triplet annihilation‐based photon upconversion (TTA‐UC) is achieved by employing an Os complex sensitizer with singlet‐to‐triplet (S‐T) absorption and an asymmetric luminescent cyclophane with switchable emission characteristics. The cyclophane contains the 9,10‐bis(phenylethynyl)anthracene unit as an emitter and can assemble into two different structures, a stable crystalline phase and a metastable supercooled nematic phase. The two structures exhibit green and yellow fluorescence, respectively, and can be accessed by distinct heating/cooling sequences. The hybridization of the cyclophane with the Os complex allows near‐infrared‐to‐visible TTA‐UC. The large anti‐Stokes shift is possible by the direct S‐T excitation, which dispenses with the use of a conventional sequence of singlet–singlet absorption and intersystem crossing. The TTA‐UC emission color is successfully switched between green and yellow by thermal stimulation.  相似文献   

19.
High-quality, monodisperse, and size-controlled Fe(3)O(4), Ag, and bifunctional Fe(3)O(4)/Ag heterodimer nanocrystals (NCs) have been synthesized successfully. In the synthesis of Fe(3)O(4) NCs, dodecanol was chosen as the substitute of 1,2-hexadecanediol and "size control" was achieved by simply adjusting the proportion among the ligands instead of utilizing seed-mediated growth. In the synthesis of Ag NCs, organometallic silver acetylacetonate (Agacac) was used as precursors and tunable particle size could be easily obtained by adjusting the reaction temperatures. By using different sized Fe(3)O(4) NCs as seeds, Fe(3)O(4)/Ag heterodimer NCs with particle sizes tuned from 5 to 16 nm for Fe(3)O(4) and 4 to 8 nm for Ag were successfully synthesized and superparamagnetism were maintained. We found that the size of Ag attached on the Fe(3)O(4) NCs relied on the size of Fe(3)O(4) seed. UV-vis absorption spectra and TEM investigations revealed that the bigger the Fe(3)O(4) NCs seed used, the bigger the Ag NCs that were obtained from the heterodimer NCs. In addition, we demonstrated that all of these NCs were successfully transferred into water by surface modification with biocompatible carboxylic acid groups, which made them meet the basic requirement for biolabeling and biomedical applications.  相似文献   

20.
We report on the first application of novel, water-soluble and fluorescent silver nanoclusters (Ag NCs) in a chemiluminescent (CL) detection system. A method has been developed for the determination of copper(II) ion that is based on the fact that the weak CL resulting from the redox reaction between Ce(IV) ion and sulfite ion is strongly enhanced by the Ag NCs and that the main CL signals now originate from Ag NCs. UV-visible spectra, CL spectra and fluorescent (FL) spectra were acquired to investigate the enhanced CL mechanism. It is proposed that the electronic energy of the excited state intermediate SO2* that originates from the CL reaction is transferred to Ag NCs to form an electronically excited NC whose emission is observed. In addition, it is found that copper(II) is capable of inhibiting the CL of the nanoclusters system, but not if other common metal ions are present. The detection of copper(II) is achieved indirectly by measuring the CL intensity of Ag NCs. Under the optimized experimental conditions, a linear relationship does exist between the intensity of CL and the concentrations of copper(II) in the range of 0.2?nM to 0.1?m??. The detection limit is 0.12?nM. The method is applied to the determination of copper(II) ion in tap water with satisfactory results.
Figa
We report the first application of novel, water-soluble and fluorescent silver nanoclusters in a chemiluminescent detection system. It was found that Ag NCs acted as the luminophor and energy acceptor. A method has been developed for the determination of copper(II) ion that is based on the fact that the capable of inhibiting the CL of the nanoclusters system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号