首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report here the preparation of novel biotinylated glyconanoparticles from well-defined biotinylated glycopolymers and poly(N-isopropylacrylamide) (PNIPAAm) synthesized via the reversible addition fragmentation chain transfer (RAFT) polymerization process. The in situ reduction of the biotinylated glycopolymers, PNIPAAm, poly(ethylene glycol), and HAuCl4 via a photochemical process resulted in the formation of biotinylated gold nanoparticles. The multifunctional biotinylated glyconanoparticles were then evaluated for their bioconjugation toward streptavidin using UV-vis spectroscopy and surface plasmon resonance (SPR). The biotinylated nanoparticles underwent aggregation in the presence of streptavidin as revealed by spectrophotometry, which indicates the accessibility of the biotin for conjugation. These results were further confirmed by surface plasmon resonance even in the case of surface-immobilized streptavidin.  相似文献   

2.
The adsorption of multiple protein layers on biotinylated organic surfaces has been characterized using surface plasmon resonance (SPR) and atomic force microscopy (AFM). Diffusion-limited loading of the biotinylated self-assembled monolayers (SAMs) ensures a precise control of the streptavidin surface density. For the subsequent interaction with biotinylated peroxidase, SPR data hint at a streptavidin density dependent orientation during peroxidase adsorption. Microcontact printed well-defined two-dimensional patterned surfaces of biotinylated organothiols and protein-resistant OEG-thiols allow an in-situ differentiation of specific and nonspecific adsorption (e.g., mono- vs multilayer adsorption). Additionally, the very important issue of biological activity of surface-bound enzymes is addressed by comparing the enzyme activities in solution with that for surface-bound species.  相似文献   

3.
The layer-by-layer self-assembly of thin films consisting of alternating layers of DNA and bis-urea nanoribbons prevents diffusion of the components within the film and allows the anchoring of biotinylated molecules through molecular recognition in a predetermined layer of the film. Electron tomography demonstrates with nanometer precision the location of gold-labeled streptavidin bound to the incorporated biotinylated molecules.  相似文献   

4.
Peptide-stabilized gold nanoparticles have been enzymatically biotinylated by a kinase-catalyzed reaction using biotin-ATP as a cosubstrate. Upon mixing with avidin-modified particles, solutions of biotinylated particles change color from red to blue, indicating aggregation of particles. On the basis of this reaction, we have developed a simple colorimetric test to monitor kinase inhibitor activity.  相似文献   

5.
A biotinylated photosensitive polymer was electrogenerated from on a ruthenium complex bearing biotin and pyrrole groups; the resulting polypyrrolic film allowed the bioaffine immobilisation of avidin and biotinylated cholera toxin and the photoelectrochemical detection of the corresponding antibody.  相似文献   

6.
By gravimetric measurements using a quartz cristal microbalance (QCM), we have studied the immobilization of biotinylated glucose oxidase enzymes (B-GOx) bound through on an intermediate avidin layer to a biotinylated polypyrrole film. The aim is to assess the amount of B-GOx specifically anchored on the biotinylated polypyrrole/avidin assembly thank to the biotin/avidin interaction between avidin and B-GOx. Indeed the estimated amount from the QCM measurement corresponds to the specific recognition of avidin/B-GOx added to a non-specific recognition (adsorption) of B-GOx. In order to discriminate these two phenomena, we have carried out a study by QCM of the anchoring of B-GOx on an avidin layer linked by adsorption to a polypyrrole free from biotin units. From QCM measurements we have deduced for the biotinylated polypyrrole/avidin assembly that the amount of B-GOx bound via the biotin/avidin interaction and those due to the avidin adsorption process correspond to 3.9 pmol cm(-2) (1.3 equivalent of B-Gox monolayer) and 1.4 pmol cm(-2) (0.46 equivalent of B-GOx monolayer) respectively. These values have been corroborated by measurements of the enzymatic activity of GOx.  相似文献   

7.
Herein, we report the development of biohybrid catalysts that are capable of catalyzing the aldol reaction. The use of biotinylated imidazolium salts in combination with racemic or enantiomerically pure catalytic anions allowed us to study the adaptive and cooperative positioning of the anionic catalyst inside the protein. Supramolecular encapsulation of the biotinylated catalyst into avidin resulted in good selectivity for the aldol reaction performed in ionic liquid/water mixtures.  相似文献   

8.
J Li  W Tan  K Wang  D Xiao  X Yang  X He  Z Tang 《Analytical sciences》2001,17(10):1149-1153
A novel biotinylated molecular beacon (MB) probe was developed to prepare a DNA biosensor using a bridge structure. MB was biotinylated at the quencher side of the stem and linked on a biotinylated glass cover slip through streptavidin, which acted as a bridge between MB and glass matrix. An efficient fluorescence microscope system was constructed to detect the fluorescence change caused by the conformation change of MB in the presence of complementary DNA target. The proposed biosensor was used to directly detect, in real-time, the target DNA molecules. The bridge immobilization method caused the proposed DNA biosensor to have a faster and more stable response. Under the optimal conditions, the newly developed DNA biosensor showed a linear response toward ssDNA in the range of 5-100 nM with a detection limit of 2 nM. It was interesting to note that the described biosensor was reproducible after being regenerated by urea.  相似文献   

9.
We have developed surfaces for the selective presentation of biotinylated peptides and proteins in a background that resists nonspecific protein adsorption; controlled amounts of biotinylated poly(ethylene glycol) (MW 3400 Da; PEG3400) anchored to titanium-dioxide-coated surfaces via an adhesive tri-peptide sequence of L-3,4-dihydroxyphenylalanine (DOPA3-PEG3400-biotin; DPB) were incorporated within a DOPA3-PEG2000 background. Using optical waveguide lightmode spectroscopy, we found that the amounts of sequentially adsorbed NeutrAvidin and singly biotinylated molecules increased proportionally with the amount of DPB in the surface. Biotinylated peptides (MW approximately 2000 Da) were able to fill all three of the remaining avidin-binding sites, while only one molecule of biotinylated PEG5000 or stem cell factor bound to each avidin. The resulting biotin-avidin-biotin linkages were stable for prolonged periods under continuous perfusion, even in the presence of excess free biotin. Hematopoietic M07e cells bound to immobilized peptide ligands for alpha5beta1 (cyclic RGD) and alpha4beta1 (cylic LDV) integrins in a DPB-dose-dependent manner, with near-maximal binding to cylic LDV for surfaces containing 1% DPB. Multiple ligands were adsorbed in a controlled manner by incubating NeutrAvidin with the respective ligands in the desired molar ratio and then adding the resulting complexes to DPB-containing surfaces. Cell adhesion to surfaces containing both cylic LDV and cyclic RGD increased in an additive manner compared to that for the individual ligands. The bioactivity of adsorbed biotinylated stem cell factor was retained, as demonstrated by DPB-dose-dependent M07e cell adhesion and ERK1/2 activation.  相似文献   

10.
The simultaneous detection of multiple analytes is an important consideration for the advancement of biosensor technology. Currently, few sensor systems possess the capability to accurately and precisely detect multiple antigens. This work presents a simple approach for the functionalization of sensor surfaces suitable for multichannel detection. This approach utilizes self-assembled monolayer (SAM) chemistry to create a nonfouling, functional sensor platform based on biotinylated single-stranded DNA immobilized via a streptavidin bridge to a mixed SAM of biotinylated alkanethiol and oligo(ethylene glycol). Nonspecific binding is minimized with the nonfouling background of the sensor surface. A usable protein chip is generated by applying protein-DNA conjugates which are directed to specific sites on the sensor chip surface by utilizing the specificity of DNA hybridization. The described platform is demonstrated in a custom-built surface plasmon resonance biosensor. The detection capabilities of a sensor using this protein array have been characterized using human chorionic gonadotropin (hCG). The platform shows a higher sensitivity in detection of hCG than that observed using biotinylated antibodies. Results also show excellent specificity in protein immobilization to the proper locations in the array. The vast number of possible DNA sequences combine with the selectivity of base-pairing makes this platform an excellent candidate for a sensor capable of multichannel protein detection.  相似文献   

11.
Protein toxins have been immobilized in a galactoside polyacrylate hydrogel in a microarray format. The large pore size and solution-like environment of these novel hydrogels allow for easy penetration of large proteins and detection reagents. Confocal microscopy provided three-dimensional visualization of dye-labeled toxins cross-linked within the gel and of streptavidin-coated quantum dot (QD) fluorophores used to visualize the toxins after incubation with biotinylated anti-toxin antibodies. Fluorescence microscopy was utilized to visualize arrays of toxins detected by a biotinylated antibody and then exposure to streptavidin-conjugated QDs. The intensity of the QD fluorescence was quantified, and binding to two toxins on three types of hydrogels was examined.  相似文献   

12.
Hsin TM  Wu K  Chellappan G 《The Analyst》2012,137(1):245-248
We report a biosensing method that is based on magnetically immobilized functional liposomes. The vesicles encapsulate magnetic nanoparticles (MNP) and enzymatic sensing reagents. Magnetic attraction between MNP and external magnets first immobilizes liposomes onto the surface of a coverglass. With the assistance from α-hemolysin (aHL), translocations of analytes through a lipid membrane trigger intravesicular enzymatic reactions. After 90 s incubation, the product from the sensing reactions, resorufin, was probed by laser-induced fluorescence. Detection of two analytes, glucose and ethanol, was demonstrated using two types of functional vesicles. The effects of MNP-containing vesicles and biotinylated vesicles on aHL's translocations of analytes were also compared. Unlike biotinylated lipids, MNP facilitate immobilization of liposomes without compromising the integrity of membrane and pore-forming activity of aHL.  相似文献   

13.
The kinetics of free glucose-6-phosphate dehydrogenase (G-6-PDH), biotinylated G-6-PDH, and biotinylated G-6-PDH complexed with avidin were investigated. The kinetics of the free enzyme were consistent with a sequential rather than a ping-pong mechanism. The kinetics of the biotinylated enzyme were similar to that of the free enzyme, but the kinetic constants were different; theK m value for NADP was halved, whereas theK m for G-6-P decreased only slightly. In the presence of avidin, theK m of biotinylated G-6-PDH for G-6-P nearly doubled whereas theK m for NADP did not change significantly. Avidin complexed with biotinylated G-6-PDH inhibited the enzyme from acting. Based upon these reactions, it was possible to devise assays for either free biotin or free avidin using biotinylated G-6-PDH as the indicator enzyme. Concentrations of biotin between 40 and 60 mg/mL, or of 25–95 Μg/mL of avidin could be measured within 2 min through the use of biotinylated G-6-PDH.  相似文献   

14.
A competitive continuous immunoassay system for the determination of 3,5,6-trichloro-2-pyridinol (TCP), the major degradation product of the insecticide chlorpyrifos, in water is described. The immunoassay system is based on the transient retention of the specific LIB-MC2 monoclonal antibody anti-TCP as a biotinylated derivative using the streptavidin-biotin interaction. The permanent immobilization of streptavidin on controlled-pore-glass provides an adequate active support for the transient retention of the biotinylated monoclonal antibody anti-TCP. In a subsequent step, the immuno-competitive reaction between the biotinylated LIB-MC2 and the TCP/hapten-POD mixture takes place. This competitive assay relies on the determination of the biocatalytic action of peroxidase, retained in the active support, on a derivatization reaction which yields a fluorescent product. The method exhibits a determination range of 0.01-200 microg L(-1) of TCP (r2=0.9919, n=9) with a precision, expressed as RSD, lower than 4.2% and a sampling frequency of 3 h(-1). The approach has been applied to the determination of TCP in water with recoveries of 89.7-105.6%.  相似文献   

15.
A novel fluorescent molecular switch for the detection of nucleic acid hybridization has been explored in relation to the development of a structure that would be amenable for operation when immobilized for solid-phase analyses. The structure was prepared by self-assembly, and used Neutravidin as the central multivalent docking molecule, a newly synthesized biotinylated long-chain linker for intercalating dye that was modified with thiazole orange (TO) at one end, and a biotinylated probe oligonucleotide. Self-assembly of the biotinylated components on adjacent Neutravidin binding sites allowed for physical placement of an oligonucleotide probe molecule next to tethered TO. The TO located at the end of the flexible linker chain was available to intercalate, and could report if a duplex structure was formed by a probe–target interaction by means of fluorescence intensity. Subsequently, regeneration of the single-stranded probe was possible without loss of the intercalator to solution. The switch constructs were assembled in solution and subsequently immobilized onto biotin functionalized optical fibers to complete the sensor design. Solution-phase fluorescence lifetime data showed a biexponential behavior for switch constructs, suggesting intercalation as well as a significant secondary binding mode for the immobilized TO. It was found that the secondary binding mechanism for the dye to DNA could be decreased, thus shifting the dye to intercalative binding modes, by adjusting the solution conditions to a pH below the pI of Neutravidin, and by increasing the ionic strength of the buffer. Preliminary work demonstrated that it was possible to achieve up to a fivefold increase in fluorescence intensity on hybridization to the target.  相似文献   

16.
A biotinylated sialylglycan was prepared enzymatically by endo-M, and binding behavior of an SSA lectin was studied on a different coverage of a sialylglycan-immobilized 27 MHz quartz-crystal microbalance (QCM).  相似文献   

17.
A biotinylated 1,5-dialkoxynaphthalene derivative has been shown to have the ability to bind strongly to avidin and thus act as an artificial binding site for cyclobis(paraquat-p-phenylene) thereby facilitating the formation of a tuneable pseudorotaxane-based bioconjugate.  相似文献   

18.
《Electroanalysis》2003,15(3):225-229
The interaction between avidin and biotin was evaluated electrochemically by monitoring the change in the electrode response of redox markers. Biotin was immobilized on the electrode surface by means of the electrochemical polymerization of biotinylated pyrrole and pyrrole. When avidin was introduced onto the biotinylated polypyrrole electrode surface, the large change in the electrode response of the redox marker was detected. The fact that the change in the electrode response of a marker ion could be attributed to the electrostatic interaction between avidin on the electrode surface and the redox marker ion present in a solution was verified by replacing avidin with NutrAvidin. At a pH lower than the isoelectric point of avidin, the electrode response of ferrocyanide as an anionic marker ion increased linearly within the range of 5.0×10?9 ?3.0×10?8 M avidin. The relative standard deviation at 1.5×10?8 M avidin was about 5.4% (n=5). The detection of biotin was also performed using a competitive reaction between biotin in solution and biotin that had been immobilized on the electrode surface in the form of the biotinylated polypyrrole.  相似文献   

19.
The bioaffine immobilization of several avidin layers on an electrode modified by a biotinylated polymer was accomplished by the first biotinylated redox bridge consisted of a tris(bipyridyl)iron(II) complex bearing six pre-oriented biotin groups.  相似文献   

20.
A simple and sensitive ligand affinity capture method (LAC) was developed to detect biotinylated biomolecules bound to a biotin–avidin base by matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry (MALDI ToF MS). Glass slides covered with a metal film for MALDI MS applications were treated with amino‐silane and derivatized with biotin followed by binding of avidin. Washing buffers with high ionic strength increased the specificity of the subsequent binding of biotinylated biomolecules to the avidin layer. A combined thin layer‐dried droplet method using α‐cyano‐4‐hydroxycinnamic acid (CHCA) in acetone or ethyl acetate resulted in the most intense ions of biotinylated polymyxin B, whereas the matrix conditions did not influence the detection of angiotensin II. Addition of biotinylated biomolecules in the low femtomole to low picomole range resulted in sufficient ion intensity for detection by the LAC method. The LAC concept was extended by binding of biotinylated lipopolysaccharide to the biotin–avidin base followed by preferential capture and specific detection of the binding antagonist polymyxin B. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号