首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Atkinson DB 《The Analyst》2003,128(2):117-125
Cavity ring-down (CRD) is a sensitive variant of traditional absorption spectroscopy that has found increasing use in a number of chemical measurement applications. This review focuses on applications of cavity ring-down spectroscopy that will be of interest to environmental chemists and analytical chemists working on environmental problems. The applications are classified into direct monitoring approaches, indirect analysis methods and ancillary studies and a differentiation is made between field-tested instruments and proof of principle studies.  相似文献   

2.
We report the absolute absorption cross sections of the fourth vibrational O-H (5ν(OH)) overtone in acetic acid using cavity ring-down spectroscopy. For compounds that undergo photodissociation via overtone excitation, such intensity information is required to calculate atmospheric photolysis rates. The fourth vibrational overtone of acetic acid is insufficiently energetic to effect dissociation, but measurement of its cross section provides a model for other overtone transitions that can affect atmospheric photochemistry. Though gas-phase acetic acid exists in equilibrium with its dimer, this work shows that only the monomeric species contributes to the acetic acid overtone spectrum. The absorption of acetic acid monomer peaks at ~615 nm and has a peak cross section of 1.84 × 10(-24) cm(2)·molecule(-1). Between 612 and 620 nm, the integrated cross section for the acetic acid monomer is (5.23 ± 0.73) × 10(-24) cm(2)·nm·molecule(-1) or (1.38 ± 0.19) × 10(-22) cm(2)·molecule(-1)·cm(-1). This is commensurate with the integrated cross section values for the fourth O-H overtone of other species. Theoretical calculations show that there is sufficient energy for hydrogen to transition between the two oxygen atoms, which results in an overtone-induced conformational change.  相似文献   

3.
Infrared-spectroscopy has proved to be a powerful method for the study of various biomedical samples, in particular for in-vitro analysis in the clinical laboratory and for non-invasive diagnostics. In general, the analysis of biofluids such as whole blood, urine, microdialysates and bioreactor broth media takes advantage of the fact that a multitude of analytes can be quantified simultaneously and rapidly without the need for reagents. Progress in the quality of infrared silver halide fibers enabled us to construct several flexible fiber-optic probes of different geometries, which are particularly suitable for the measurement of small biosamples. Recent trends show that dry film measurements by mid-infrared spectroscopy could revolutionize analytical tools in the clinical chemistry laboratory, and an example is given. Infrared diagnostic tools show a promising potential for patients, and minimal-invasive blood glucose assays or skin tissue pathology in particular cannot be left out using mid-infrared fiber-based probes. Other applications include the measurement of skin samples including penetration studies of vitamins and constituents of cosmetic cream formulations. A further field is the micro-domain analysis of biopsy samples from bog mummified corpses, and recent results on the chemistry of dermis and hair samples are reported. Another field of application, for which results are reported, is food analysis and bio-reactor monitoring.  相似文献   

4.
Elimination of molecular bromine is probed in the B (3)Pi(ou) (+)<--X (1)Sigma(g) (+) transition following photodissociation of CHBr(2)Cl at 248 nm by using cavity ring-down absorption spectroscopy. The quantum yield for the Br(2) elimination reaction is determined to be 0.05+/-0.03. The nascent vibrational population ratio of Br(2)(v=1)Br(2)(v=0) is obtained to be 0.5+/-0.2. A supersonic beam of CHBr(2)Cl is similarly photofragmented and the resulting Br atoms are monitored with a velocity map ion-imaging detection, yielding spatial anisotropy parameters of 1.5 and 1.1 with photolyzing wavelengths of 234 and 267 nm, respectively. The results justify that the excited state promoted by 248 nm should have an A(") symmetry. Nevertheless, when CHBr(2)Cl is prepared in a supersonic molecular beam under a cold temperature, photofragmentation gives no Br(2) detectable in a time-of-flight mass spectrometer. A plausible pathway via internal conversion is proposed with the aid of ab initio potential energy calculations. Temperature dependence measurements lend support to the proposed pathway. The production rates of Br(2) between CHBr(2)Cl and CH(2)Br(2) are also compared to examine the chlorine-substituted effect.  相似文献   

5.
Cavity ring-down spectroscopy was used to study the reaction of ClOO with NO in 50-150 Torr total pressure of O2/N2 diluent at 205-243 K. A value of k(ClOO+NO) = (4.5 +/- 0.9) x 10(-11) cm3 molecule(-1) s(-1) at 213 K was determined (quoted uncertainties are two standard deviations). The yield of NO(2) in the ClOO + NO reaction was 0.18 +/- 0.02 at 213 K and 0.15 +/- 0.02 at 223 K. An upper limit of k(ClOO+Cl2) < 3.5 x 10(-14) cm3 molecule(-1) s(-1) was established at 213 K. Results are discussed with respect to the atmospheric chemistry of ClOO and other peroxy radicals.  相似文献   

6.
Samples of chromophoric dissolved organic matter(CDOM)in the East China Sea in autumn(October in 2011)were analyzed by excitation emission matrix(EEM)fluorescence spectroscopy combined with parallel factor analysis(PARAFAC).Three terrestrial humic-like components(C1,C2 and C3)and one protein-like component(C4)were identified.Based on spatial distributions,as well as relationships with salinity,the following assignments were made.The three humic-like components(C1,C2 and C3)showed conservative mixing behavior and came mainly from riverine input.The protein-like component(C4)was considered a combination of autochthonous production and terrestrial inputs and a biologically labile component.Path analysis of samples from the middle and bottom layers revealed that the causal effects on C1 were 78.46%for salinity,and 21.54%for apparent oxygen utilization(AOU);those on C2 were 76.43%for salinity,and 23.57%for AOU;those on C3 were70.49%for salinity,7.01%for Chl-a,and 22.50%for AOU;those on C4 were 55.54%for salinity,14.6%for Chl-a,and29.86%for AOU in middle layer;and those on C4 were 57.37%for salinity,29.02%for Chl-a,and 13.61%for AOU in bottom layer.Results indicated that CDOM in the East China Sea was mainly affected by terrestrial inputs,and microbial activities also played a key role in biogeochemical processes of CDOM.The application of the EEM-PARAFAC model presented a unique opportunity to observe compositional changes in CDOM in the East China Sea.In addition,the humification index(HIX)suggested that CDOM from the East China Sea was less stable and stayed shorter in the environment.  相似文献   

7.
By using cavity ring-down absorption spectroscopy technique, we have observed the channel of Br2 molecular elimination following photodissociation of CF2Br2 at 248 nm. A tunable laser beam, which is crossed perpendicular to the photolyzing laser beam in a ring-down cell, is used to probe the Br2 fragment in the B 3Piou+-X1Sigmag+ transition. The vibrational population is obtained in a nascent state, despite ring-down time as long as 500-1000 ns. The population ratio of Br2(v=1)/Br2(v=0) is determined to be 0.4+/-0.2, slightly larger than the value of 0.22 evaluated by Boltzmann distribution at room temperature. The quantum yield of the Br2 elimination reaction is also measured to be 0.04+/-0.01. This work provides direct evidence to support molecular elimination occurring in the CF2Br2 photodissociation and proposes a plausible pathway with the aid of ab initio potential-energy calculations. CF2Br2 is excited probably to the 1B1 and 3B2 states at 248 nm. As the C-Br bond is elongated upon excitation, the coupling of the 1A'(1B1) state to the high vibrational levels of the ground state X 1A'(1A1) may be enhanced to facilitate the process of internal conversion. After transition, the highly vibrationally excited CF2Br2 feasibly surpasses a transition barrier prior to decomposition. According to the ab initio calculations, the transition state structure tends to correlate with the intermediate state CF2Br+Br(CF2Br...Br) and the products CF2+Br2. A sequential photodissociation pathway is thus favored. That is, a single C-Br bond breaks, and then the free-Br atom moves to form a Br-Br bond, followed by the Br2 elimination. The formed Br-Br bond distance in the transition state tends to approach equilibrium such that the Br2 fragment may be populated in cold vibrational distribution. Observation of a small vibrational population ratio of Br2(v=1)Br2(v=0) agrees with the proposed mechanism.  相似文献   

8.
Frequency-stabilized cavity ring-down spectroscopy measurements were performed in the P-branch of the O(2) A-band [b(1)Σ(g) (+)?←?X (3)Σ(g) (-)(0,0)] near atmospheric pressure. Line mixing parameters and collision-induced absorption were quantified and reported. These measurements show qualitative differences with those taken at relatively high pressure (2 MPa-20 MPa). We also assess the implications of these measurements on atmospheric retrievals.  相似文献   

9.
A primary dissociation channel of Br(2) elimination is detected following a single-photon absorption of (COBr)(2) at 248 nm by using cavity ring-down absorption spectroscopy. The technique contains two laser beams propagating in a perpendicular configuration. The tunable laser beam along the axis of the ring-down cell probes the Br(2) fragment in the B(3)Π(ou)(+)-X(1)Σ(g)(+) transition. The measurements of laser energy- and pressure-dependence and addition of a Br scavenger are further carried out to rule out the probability of Br(2) contribution from a secondary reaction. By means of spectral simulation, the ratio of nascent vibrational population for v = 0, 1, and 2 levels is evaluated to be 1:(0.65 ± 0.09):(0.34 ± 0.07), corresponding to a Boltzmann vibrational temperature of 893 ± 31 K. The quantum yield of the ground state Br(2) elimination reaction is determined to be 0.11 ± 0.06. With the aid of ab initio potential energy calculations, the pathway of molecular elimination is proposed on the energetic ground state (COBr)(2) via internal conversion. A four-center dissociation mechanism is followed synchronously or sequentially yielding three fragments of Br(2) + 2CO. The resulting Br(2) is anticipated to be vibrationally hot. The measurement of a positive temperature effect supports the proposed mechanism.  相似文献   

10.
We summarized both advantages and disadvantages of different light modulators used in cw-CRDS experiments. For the first time, we introduce the use of a semiconductor optical amplifier (SOA) as light modulator in cw-CRDS. A direct comparison of the sensitivity realized on the same instrument using an SOA as modulator with use of an acousto-optic modulator (AOM) has been made. It is found that the SOA has larger extinction ratio (81 dB) than the AOM. For our instrument, with single-shot initial signal-to-noise ratio of 1400:1, these two modulators are found giving equivalent sensitivity.  相似文献   

11.
Methane (CH4) is the third most abundant greenhouse gas (GHG) but is vastly understudied in comparison to carbon dioxide. Sources and sinks to the atmosphere vary considerably in estimation, including sources such as fresh and marine water systems. A new method to determine dissolved methane concentrations in discrete water samples has been evaluated. By analyzing an equilibrated headspace using laser cavity ring-down spectroscopy (CRDS), low nanomolar dissolved methane concentrations can be determined with high reproducibility (i.e., 0.13 nM detection limit and typical 4% RSD). While CRDS instruments cost roughly twice that of gas chromatographs (GC) usually used for methane determination, the process presented herein is substantially simpler, faster, and requires fewer materials than GC methods. Typically, 70-mL water samples are equilibrated with an equivalent amount of zero air in plastic syringes. The equilibrated headspace is transferred to a clean, dry syringe and then drawn into a Picarro G2301 CRDS analyzer via the instrument’s pump. We demonstrate that this instrument holds a linear calibration into the sub-ppmv methane concentration range and holds a stable calibration for at least two years. Application of the method to shipboard dissolved methane determination in the northern Gulf of Mexico as well as river water is shown. Concentrations spanning nearly six orders of magnitude have been determined with this method.  相似文献   

12.
Following single-photon dissociation of CH(2)I(2) at 248 nm, I(2) molecular elimination is detected by using cavity ring-down absorption spectroscopy. The technique comprises two laser beams propagating in a perpendicular configuration, in which a tunable laser beam along the axis of the ring-down cell probes the I(2) fragment in the B (3)Π(ou)(+) - X (1)Σ(g)(+) transition. The nascent vibrational populations for v = 0, 1, and 2 levels are obtained with a population ratio of 1:(0.65 ± 0.10):(0.30 ± 0.05), corresponding to a Boltzmann-like vibrational temperature of 544 ± 73 K. The quantum yield of the ground state I(2) elimination reaction is determined to be 0.0040 ± 0.0025. With the aid of ab initio potential energy calculations, the pathway of molecular elimination is proposed on the energetic ground state CH(2)I(2) via internal conversion, followed by asynchronous three-center dissociation. A positive temperature effect supports the proposed mechanism.  相似文献   

13.
Following photodissociation of CH2Br2 at 248 nm, Br2 molecular elimination is detected by using a tunable laser beam, as crossed perpendicular to the photolyzing laser beam in a ring-down cell, probing the Br2 fragment in the B 3Piou+ -X 1Sigmag+ transition. The nascent vibrational population is obtained, yielding a population ratio of Br2(v = 1)Br2(v = 0) to be 0.7 +/- 0.2. The quantum yield for the Br2 elimination reaction is determined to be 0.2 +/- 0.1. Nevertheless, when CH2Br2 is prepared in a supersonic molecular beam under cold temperature, photofragmentation gives no Br2 detectable in a time-of-flight mass spectrometer. With the aid of ab initio potential energy calculations, a plausible pathway is proposed. Upon excitation to the 1B1 or 3B1 state, C-Br bond elongation may change the molecular symmetry of Cs and enhance the resultant 1 1,3A'-X 1A' (or 1 1,3B1-X 1A1 as C2v is used) coupling to facilitate the process of internal conversion, followed by asynchronous concerted photodissociation. Temperature dependence measurements lend support to the proposed pathway.  相似文献   

14.
Cavity ring-down spectroscopy using a fiber-coupled continuous wave distributed feedback laser at a wavelength of 1520 nm has been used to measure extinction of light by samples of nearly monodisperse aerosol particles <1 μm in diameter. A model is tested for the analysis of the sample extinction that is based on the Poisson statistics of the number of particles within the intracavity laser beam: variances of measured extinction are used to derive values of the scattering cross section for size-selected aerosol particles, without need for knowledge of the particle number density or sample length. Experimental parameters that influence the performance of the CRD system and the application and limitations of the statistical model are examined in detail. Determinations are reported of the scattering cross sections for polystyrene spheres (PSSs), sodium chloride, and ammonium sulfate, and, for particles greater than 500 nm in diameter, are shown to be in agreement with the corresponding values calculated using Mie theory or Discrete Dipole Approximation methods. For smaller particles, the experimentally derived values of the scattering cross section are larger than the theoretical predictions, and transmission of a small fraction of larger particles into the cavity is argued to be responsible for this discrepancy. The effects of cubic structure on the determination of optical extinction efficiencies of sodium chloride aerosol particles are examined. Values are reported for the real components of the refractive indices at 1520 nm of PSS, sodium chloride, and ammonium sulfate aerosol particles.  相似文献   

15.
Initial spectral results are reported from a newly constructed cavity ringdown spectrometer. The apparatus incorporates a slit-jet expansion, with or without a discharge, to produce cold sample molecules. High spectral resolution in both the near- and mid-IR is obtained by using stimulated Raman scattering of the pulsed amplified output of a cw Ti:Sa ring laser. Molecular spectra presented include the electronic near-IR transitions a (1)Delta(g)(-)<-- X (3)Sigma(g)(-) of O(2) and B (3)Pi(g)<-- A (3)Sigma(u)(+) of metastable N(2) and vibrational overtones of H(2)O (polyad 2) and the OH radical. Fundamental vibrational transitions of CH(3) (nu(3)) in the mid-IR are also observed. This apparatus has demonstrated the potential for obtaining high-resolution spectra of both reactive and non-reactive species throughout the entire IR region.  相似文献   

16.
Lin B  Bergholt MS  Lau DP  Huang Z 《The Analyst》2011,136(19):3896-3903
We report the diagnostic ability of ultraviolet (UV)-excited autofluorescence (AF) excitation-emission matrix (EEM) spectroscopy associated with parallel factor (PARAFAC) analysis for differentiating cancer from normal nasopharyngeal tissue. A bifurcated fiber-optic probe coupled with an EEM system was used to acquire tissue AF EEMs using excitation wavelengths between 260 and 400 nm, and emission collection between 280 and 500 nm. A total of 152 AF EEM landscapes were acquired from 13 normal and 16 nasopharyngeal carcinoma (NPC) thawed ex vivo tissue samples from 23 patients. PARAFAC was introduced for curve resolution of individual AF EEM landscapes associated with the endogenous tissue constituents. The significant factors were further fed to a support vector machine (SVM) and cross-validated to construct diagnostic algorithms. Both the EEM intensity landscapes and the PARAFAC model revealed tryptophan, collagen, and elastin to be the three major endogenous fluorophores responsible for the AF signal from normal and NPC tissues. The EEM intensity distribution and PARAFAC factors suggest an increase of tryptophan and a decrease of collagen and elastin in NPC tissues compared to the normal. The classification results obtained from the PARAFAC-SVM modeling yielded a diagnostic accuracy of 94.7% (sensitivity of 95.0% (76/80); specificity of 94.4% (68/72)) for normal and NPC tissue differentiation. This study suggests that UV-excited AF EEM spectroscopy integrated with PARAFAC algorithms has the potential to provide clinical diagnostics of early onset and progression of NPC.  相似文献   

17.
The reactions of Cl atoms with RI (R = n-C3H7, n-C4H9, cyclo-C6H11, C6H5, C6F5, and p-CH3C6H4) have been studied using cavity ring-down spectroscopy at a temperature range of 233-313 K and at 100 Torr total pressure of N2 diluent. Visible absorption spectra of the RI-Cl adducts were recorded at 440-520 nm at 263 K. The yields of the adducts were temperature-dependent. There was no discernible reaction of the adducts in the presence of 100 Torr of O2 at 263 K. Theoretical calculations were performed for C4H9I-Cl and C6H5I-Cl for quantitative explanation of the absorption spectra and the strength of the I-Cl bonds in the charge-transfer complexes. Evidence for the adduct formation following the reaction of Cl with C6H5Br was sought but not found at 440 and 520 nm.  相似文献   

18.
Evanescent wave cavity ring-down spectroscopy (EW-CRDS) has been employed to study the interfacial adsorption kinetics of coumarin-tagged macromolecules onto a range of functionalized planar surfaces. Such studies are valuable in designing polymers for complex systems where the degree of interaction between the polymer and surface needs to be tailored. Three tagged synthetic polymers with different functionalities are examined: poly(acrylic acid) (PAA), poly(3-sulfopropyl methacrylate, potassium salt) (PSPMA), and a mannose-modified glycopolymer. Adsorption transients at the silica/water interface are found to be characteristic for each polymer, and kinetics are deduced from the initial rates. The chemistry of the adsorption interfaces has been varied by, first, manipulation of silica surface chemistry via the bulk pH, followed by surfaces modified by poly(L-glutamic acid) (PGA) and cellulose, giving five chemically different surfaces. Complementary atomic force microscopy (AFM) imaging has been used for additional surface characterization of adsorbed layers and functionalized interfaces to allow adsorption rates to be interpreted more fully. Adsorption rates for PSPMA and the glycopolymer are seen to be highly surface sensitive, with significantly higher rates on cellulose-modified surfaces, whereas PAA shows a much smaller rate dependence on the nature of the adsorption surface.  相似文献   

19.
The A-X bands of the CH radical, produced in a 248 nm two-photon photolysis or in a supersonic jet discharge of CHBr(3), have been observed via cavity ring-down absorption spectroscopy. Bromoform is a well-known photolytic source of CH radicals, though no quantitative measurement of the CH production efficiency has yet been reported. The aim of the present work is to quantify the CH production from both photolysis and discharge of CHBr(3). In the case of photolysis, the range of pressure and laser fluences was carefully chosen to avoid postphotolysis reactions with the highly reactive CH radical. The CH production efficiency at 248 nm has been measured to be Phi=N(CH)N(CHBr(3))=(5.0+/-2.5)10(-4) for a photolysis laser fluence of 44 mJ cm(-2) per pulse corresponding to a two-photon process only. In addition, the internal energy distribution of CH(X (2)Pi) has been obtained, and thermalized population distributions have been simulated, leading to an average vibrational temperature T(vib)=1800+/-50 K and a rotational temperature T(rot)=300+/-20 K. An alternative technique for producing the CH radical has been tested using discharge-induced dissociation of CHBr(3) in a supersonic expansion. The CH product was analyzed using the same cavity ring-down spectroscopy setup. The production of CH by discharge appears to be as efficient as the photolysis technique and leads to rotationally relaxed radicals.  相似文献   

20.
Using evanescent-wave cavity ring-down spectroscopy (EW-CRDS), we monitored the change in the absorbance of a thin film of methylene blue (MB) at an air/fused-silica interface while varying the polarization of the incident light (600 nm). We derived the average orientation angle of the planar MB molecules with respect to the surface normal and observed that the average orientation angle decreases as the surface concentration increases. At low surface concentrations, the MB molecules lie almost flat on the surface, whereas at higher surface concentrations the molecules become vertically oriented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号