首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A numerical algorithm intended for the study of flows in a cylindrical container under laminar flow conditions is proposed. High resolution of the flow field, governed by the Navier–Stokes equations in velocity–vorticity formulation relative to a cylindrical frame of reference, is achieved through spatial discretisation by means of the spectral method. This method is based on a Fourier expansion in the azimuthal direction and an expansion in Chebyshev polynomials in the (nonperiodic) radial and axial directions. Several regularity constraints are used to take care of the coordinate singularity. These constraints are implemented, together with the boundary conditions at the top, bottom and mantle of the cylinder, via the tau method. The a priori unknown boundary values of the vorticity are evaluated by means of the influence-matrix technique. The compatibility between the mathematical and numerical formulation of the Navier–Stokes equations is established through a tau-correction procedure. The resolved flow field exhibits high-precision satisfaction of the incompressibility constraints for velocity and vorticity and the definition of the vorticity. The performance of the solver is illustrated by resolution of several configurations representative of generic three-dimensional laminar flows.  相似文献   

2.
A velocity–vorticity formulation of the Navier–Stokes equations is presented as an alternative to the primitive variables approach. The velocity components and the vorticity are solved for in a fully coupled manner using a Newton method. No artificial viscosity is required in this formulation. The pressure is updated by a method allowing natural imposition of boundary conditions. Incompressible and subsonic results are presented for two-dimensional laminar internal flows up to high Reynolds numbers.  相似文献   

3.
The paper deals with a novel computational formulation for the analysis of viscous flows past a solid body. The formulation is based upon a convenient decomposition of the flow field into potential and rotational velocity contributions, which has the distinguishing feature that the rotational velocity vanishes in much of, if not all, the region in which the vorticity is negligible. Contrary to related formulations implemented by the authors in the past, in the proposed approach, discontinuities of the potential and rotational velocity fields across a prescribed surface emanating from the trailing edge (such as the wake mid-surface) are eliminated, thereby facilitating numerical implementations. However, the main novelty is related to the application of the boundary condition: first, the expression for the velocity used for the condition on the body boundary is consistent with that for the velocity in the field; also—contrary to related formulations used by the authors in the past—in the proposed approach, the condition on the body boundary does not require the evaluation of the total vorticity (inside and outside the computational domain). The proposed algorithm, valid for three-dimensional compressible flows, is validated—as a first step—for the case of two-dimensional incompressible flows. Specifically, numerical results are presented for the aerodynamic analysis of two-dimensional incompressible viscous flows past a circular cylinder and past a Joukowski airfoil. In order to verify the desirable absence of artificial damping, we present also results pertaining to the flutter (i.e., dynamic aeroelastic) analysis of a spring-mounted circular cylinder in a viscous flow, free to move in a direction orthogonal to the unperturbed flow. In both cases (aerodynamics and aeroelasticity), the results are in good agreement with existing literature data.  相似文献   

4.
A finite difference method for the Navier–Stokes equations in vorticity –streamfunction formulation is proposed to resolve the difficulty of the lack of a vorticity boundary condition at a no-slip boundary. It is particularly suitable for flows in regions with complicated geometries. Convergence with second-order accuracy in vorticity and velocity is established. In numerical experiments the convergence rates agree with theoretical predictions. Test results for the two-dimensional driven cavity problem and for the flow in expansion and contraction channels are given.  相似文献   

5.
Steady and oscillating axisymmetric tube flows are modelled using a vorticity transport algorithm. The axisymmetric convective –diffusive Navier–Stokes equations are solved using a splitting technique. Axisymmetric ring vortex filaments are introduced on the walls and subsequently convected and diffused throughout the flow field. An axisymmetric equation similar to the Oseen diffusion equation is used to diffuse the ring vortex filaments. Vorticity is reflected from the tube walls using two techniques. Results are presented for the developing Poiseuille flow and for the developed flow in the form of the entrance length and the axial velocity and vorticity profiles. Good agreement is achieved with a finite difference method in the developing region of Poiseuille flow. The developed flow results are compared with the analytical solutions. The developed profiles of velocity and vorticity have errors of less than 0ċ3 per cent for both methods of dealing with reflection of diffusion at the bounding surfaces and similar accuracy is obtained for the velocity profiles in oscillating flow except at the wall. Oscillating flow is produced with a discretized sinusoidal piston motion. Velocity profiles, boundary layer thickness and entrance length are presented for oscillating flow. Good agreement is achieved for low-Womersley-number non-dimensional frequency. At higher values of this parameter, flows are inaccurately simulated, because the number of piston positions used to discretize the piston motion is inversely proportional to the non-dimensional frequency.  相似文献   

6.
The study of axisymmetric flows is of interest not only from an academic point of view, due to the existence of exact solutions of Navier–Stokes equations, but also from an industrial point of view, since these kind of flows are frequently found in several applications. In the present work the development and implementation of a finite element algorithm to solve Navier–Stokes equations with axisymmetric geometry and boundary conditions is presented. Such algorithm allows the simulation of flows with tangential velocity, including free surface flows, for both laminar and turbulent conditions. Pseudo‐concentration technique is used to model the free surface (or the interface between two fluids) and the k–ε model is employed to take into account turbulent effects. The finite element model is validated by comparisons with analytical solutions of Navier–Stokes equations and experimental measurements. Two different industrial applications are presented. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
A finite difference method is presented for solving the 3D Navier–Stokes equations in vorticity–velocity form. The method involves solving the vorticity transport equations in ‘curl‐form’ along with a set of Cauchy–Riemann type equations for the velocity. The equations are formulated in cylindrical co‐ordinates and discretized using a staggered grid arrangement. The discretized Cauchy–Riemann type equations are overdetermined and their solution is accomplished by employing a conjugate gradient method on the normal equations. The vorticity transport equations are solved in time using a semi‐implicit Crank–Nicolson/Adams–Bashforth scheme combined with a second‐order accurate spatial discretization scheme. Special emphasis is put on the treatment of the polar singularity. Numerical results of axisymmetric as well as non‐axisymmetric flows in a pipe and in a closed cylinder are presented. Comparison with measurements are carried out for the axisymmetric flow cases. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
This paper is concerned with the numerical resolution of the incompressible Navier–Stokes equations in the velocity–vorticity form on non-orthogonal structured grids. The discretization is performed in such a way, that the discrete operators mimic the properties of the continuous ones. This allows the discrete equivalence between the primitive and velocity–vorticity formulations to be proved. This last formulation can thus be seen as a particular technique for solving the primitive equations. The difficulty associated with non-simply connected computational domains and with the implementation of the boundary conditions are discussed. One of the main drawback of the velocity–vorticity formulation, relative to the additional computational work required for solving the additional unknowns, is alleviated. Two- and three-dimensional numerical test cases validate the proposed method. © 1998 John Wiley & Sons, Ltd.  相似文献   

9.
The purpose of the present study is to establish a numerical model appropriate for solving inviscid/viscous free‐surface flows related to nonlinear water wave propagation. The viscous model presented herein is based on the Navier–Stokes equations, and the free‐surface is calculated through an arbitrary Lagrangian–Eulerian streamfunction‐vorticity formulation. The streamfunction field is governed by the Poisson equation, and the vorticity is obtained on the basis of the vorticity transport equation. For computing the inviscid flow the Laplace streamfunction equation is used. These equations together with the respective (appropriate) fully nonlinear free‐surface boundary conditions are solved using a finite difference method. To demonstrate the model feasibility, in the present study we first simulate collision processes of two solitary waves of different amplitudes, and compute the phenomenon of overtaking of such solitary waves. The developed model is subsequently applied to calculate (both inviscid and the viscous) flow field, as induced by passing of a solitary wave over submerged rectangular structures and rigid ripple beds. Our study provides a reasonably good understanding of the behavior of (inviscid/viscous) free‐surface flows, within the framework of streamfunction‐vorticity formulation. The successful simulation of the above‐mentioned test cases seems to suggest that the arbitrary Lagrangian–Eulerian/streamfunction‐vorticity formulation is a potentially powerful approach, capable of effectively solving the fully nonlinear inviscid/viscous free‐surface flow interactions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
We present a strong form meshless solver for numerical solution of the nonstationary, incompressible, viscous Navier–Stokes equations in two (2D) and three dimensions (3D). We solve the flow equations in their stream function-vorticity (in 2D) and vector potential-vorticity (in 3D) formulation, by extending to 3D flows the boundary condition-enforced immersed boundary method, originally introduced in the literature for 2D problems. We use a Cartesian grid, uniform or locally refined, to discretize the spatial domain. We apply an explicit time integration scheme to update the transient vorticity equations, and we solve the Poisson type equation for the stream function or vector potential field using the meshless point collocation method. Spatial derivatives of the unknown field functions are computed using the discretization-corrected particle strength exchange method. We verify the accuracy of the proposed numerical scheme through commonly used benchmark and example problems. Excellent agreement with the data from the literature was achieved. The proposed method was shown to be very efficient, having relatively large critical time steps.  相似文献   

11.
The direct boundary element method is an excellent candidate for imposing the normal flux boundary condition in vortex simulation of the three-dimensional Navier–Stokes equations. For internal flows, the Neumann problem governing the velocity potential that imposes the correct normal flux is ill-posed and, in the discrete form, yields a singular matrix. Current approaches for removing the singularity yield unacceptable results for the velocity and its gradients. A new approach is suggested based on the introduction of a pseudo-Lagrange multiplier, which redistributes localized discretization errors—endemic to collocation techniques— over the entire domain surface, and is shown to yield excellent results. Additionally, a regularized integral formulation for the velocity gradients is developed which reduces the order of the integrand singularity from four to two. This new formulation is necessary for the accurate evaluation of vorticity stretch, especially as the evaluation points approach the boundaries. Moreover, to guarantee second-order differentiability of the boundary potential distribution, a piecewise quadratic variation in the potential is assumed over triangular boundary elements. Two independent node-numbering systems are assigned to the potential and normal flux distribu- tions on the boundary to account for the single- and multi-valuedness of these variables, respectively. As a result, higher accuracy as well as significantly reduced memory and computational cost is achieved for the solution of the Neumann problem. © 1997 John Wiley & Sons, Ltd.  相似文献   

12.
A new mathematical formulation, called the pseudovorticity–velocity formulation, of the three-dimensional incompressible Navier–Stokes equations is presented as an alternative to the vorticity–velocity approach. For the model lid-driven cavity flow problem in two and three dimensions, combined with an explicit mixed spectral /finite different numerical scheme the proposed formulation is found to be efficient and very accurate as compared with the results available in the literature. In particular, the simulation results demonstrate an attractive feature of the present formulation compared with the vorticity–velocity approach, namely that the divergence-free condition of the velocity field can always be achieved on a non-staggered mesh.  相似文献   

13.
A coupling method for numerical calculations of steady free‐surface flows around a body is presented. The fluid domain in the neighbourhood of the hull is divided into two overlapping zones. Viscous effects are taken in account near the hull using Reynolds‐averaged Navier–Stokes equations (RANSE), whereas potential flow provides the flow away from the hull. In the internal domain, RANSE are solved by a fully coupled velocity, pressure and free‐surface elevation method. In the external domain, potential‐flow theory with linearized free‐surface condition is used to provide boundary conditions to the RANSE solver. The Fourier–Kochin method based on the Fourier–Kochin formulation, which defines the velocity field in a potential‐flow region in terms of the velocity distribution at a boundary surface, is used for that purpose. Moreover, the free‐surface Green function satisfying this linearized free‐surface condition is used. Calculations have been successfully performed for steady ship‐waves past a serie 60 and then have demonstrated abilities of the present coupling algorithm. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
In the present work, an indirect boundary integral method for the numerical solution of Navier–Stokes equations formulated in velocity–vorticity dependent variables is proposed. This wholly integral approach, based on Helmholtz's decomposition, deals directly with the vorticity field and gives emphasis to the establishment of appropriate boundary conditions for the vorticity transport equation. The coupling between the vorticity and the vortical velocity fields is expressed by an iterative procedure. The present analysis shows the usefulness of an integral formulation not only in providing a potentially more efficient computational tool, but also in giving a better understanding to the physics of the phenomenon. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
16.
Boundary value problems for Stokes and Navier-Stokes equations with non-standard boundary conditions are studied. Included is the case where the pressure or its normal derivative is given on some part of the boundary or the pressure is given up to a constant but given velocity flux. First, a variational formulation is introduced which is shown to be equivalent to the Stokes equations with the non-standard boundary conditions under consideration. The existence and uniqueness of the solution of the variational problem are studied. Secondly, most of the results obtained for the Stokes equations are extended to the case of the Navier-Stokes equations. The final section is devoted to numerical experiments, flows in pipes and physiological flows.  相似文献   

17.
This paper gives a review of methods where Green's theorem may be employed in solving numerically the Navier–Stokes equations for incompressible fluid motion. They are based on the concept of using the theorem to transform local boundary conditions given on the boundary of a closed region in the solution domain into global, or integral, conditions taken over it. Two formulations of the Navier–Stokes equations are considered: that in terms of the streamfunction and vorticity for two-dimensional motion and that in terms of the primitive variables of the velocity components and the pressure. In the first formulation overspecification of conditions for the streamfunction is utilized to obtain conditions of integral type for the vorticity and in the second formulation integral conditions for the pressure are found. Some illustrations of the principle of the method are given in one space dimension, including some derived from two-dimensional flows using the series truncation method. In particular, an illustration is given of the calculation of surface vorticity for two-dimensional flow normal to a flat plate. An account is also given of the implementation of these methods for general two-dimensional flows in both of the mentioned formulations and a numerical illustration is given.  相似文献   

18.
For viscous (barotropic or incompressible) fluids it is shown that, if the vorticity and the viscous force are orthogonal, vortex lines are convected by a vector field which fits with the velocity field when viscosity vanishes (extension of Helmholtz theorem); it is also found that energy remains constant along the field lines of this vector field (extension of Bernoulli theorem).If, moreover, vorticity and velocity are orthogonal too, the magnitude of the vorticity then behaves as the density of a fluid which flows along streamsheets according to this very same vector field. These properties are mainly encountered for plane parallel flows, axially symmetrical flows, spherical flows, but also for some other miscellaneous flow geometries such as unidirectional or radial flows. The set of the former three flows can even be characterized by these properties; that enhances this set of important flow geometries, avails a general view on vorticity behavior, and explains the great simplicity of vorticity equations in these cases. Numerous examples and comments are given for illustrating.  相似文献   

19.
A method is outlined for solving two-dimensional transonic viscous flow problems, in which the velocity vector is split into the gradient of a potential and a rotational component. The approach takes advantage of the fact that for high-Reynolds-number flows the viscous terms of the Navier-Stokes equations are important only in a thin shear layer and therefore solution of the full equations may not be needed everywhere. Most of the flow can be considered inviscid and, neglecting the entropy and vorticity effects, a potential model is a good approximation in the flow core. The rotational part of the flow can then be calculated by solution of the potential, streamfunction and vorticity transport equations. Implementation of the no-slip and no-penetration boundary conditions at the walls provides a simple mechanism for the interaction between the viscous and inviscid solutions and no extra coupling procedures are needed. Results are presented for turbulent transonic internal choked flows.  相似文献   

20.
This paper describes the Eulerian–Lagrangian boundary element model for the solution of incompressible viscous flow problems using velocity–vorticity variables. A Eulerian–Lagrangian boundary element method (ELBEM) is proposed by the combination of the Eulerian–Lagrangian method and the boundary element method (BEM). ELBEM overcomes the limitation of the traditional BEM, which is incapable of dealing with the arbitrary velocity field in advection‐dominated flow problems. The present ELBEM model involves the solution of the vorticity transport equation for vorticity whose solenoidal vorticity components are obtained iteratively by solving velocity Poisson equations involving the velocity and vorticity components. The velocity Poisson equations are solved using a boundary integral scheme and the vorticity transport equation is solved using the ELBEM. Here the results of two‐dimensional Navier–Stokes problems with low–medium Reynolds numbers in a typical cavity flow are presented and compared with a series solution and other numerical models. The ELBEM model has been found to be feasible and satisfactory. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号