首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The initial employment of 2-(hydroxymethyl)pyridine for the synthesis of Mn/Ln (Ln = lanthanide) and Mn/Y clusters, in the absence of an ancillary organic ligand, has afforded a family of tetranuclear [Mn(III)(2)M(III)(2)(OH)(2)(NO(3))(4)(hmp)(4)(H(2)O)(4)](NO(3))(2) (M = Dy, 1; Tb, 2; Gd, 3; Y; 4) anionic compounds. 1-4 possess a planar butterfly (or rhombus) core and are rare examples of carboxylate-free Mn/Ln and Mn/Y clusters. Variable-temperature dc and ac studies established that 1 and 2, which contain highly anisotropic Ln(III) atoms, exhibit slow relaxation of their magnetization vector. Fitting of the obtained magnetization (M) versus field (H) and temperature (T) data for 3 by matrix diagonalization and including only axial anisotropy (zero-field splitting, ZFS) showed the ground state to be S = 3. Complex 4 has an S = 0 ground state. Fitting of the magnetic susceptibility data collected in the 5-300 K range for 3 and 4 to the appropriate van Vleck equations revealed, as expected, extremely weak antiferromagnetic interactions between the paramagnetic ions; for 3, J(1) = -0.16(2) cm(-1) and J(2) = -0.12(1) cm(-1) for the Mn(III)···Mn(III) and Mn(III)···Gd(III) interactions, respectively. The S = 3 ground state of 3 has been rationalized on the basis of the spin frustration pattern in the molecule. For 4, J = -0.75(3) cm(-1) for the Mn(III)···Mn(III) interaction. Spin frustration effects in 3 have been quantitatively analyzed for all possible combinations of sign of J(1) and J(2).  相似文献   

2.
A series of isostructural cyano-bridged Mn(III)(h.s.)-M(III)(l.s.) alternating chains, [Mn(III)(5-TMAMsalen)M(III)(CN)(6)]?4H(2)O (5-TMAMsalen(2-)=N,N'-ethylenebis(5-trimethylammoniomethylsalicylideneiminate), Mn(III)(h.s.)=high-spin Mn(III), M(III)(l.s.)=low-spin Co(III), Mn-Co; Fe(III), Mn-Fe; Mn(III), Mn-Mn; Cr(III), Mn-Cr) was synthesized by assembling [Mn(III)(5-TMAMsalen)](3+) and [M(III)(CN)(6)](3-). The chains present in the four compounds, which crystallize in the monoclinic space group C2/c, are composed of an [-Mn(III)-NC-M(III)-CN-] repeating motif, for which the -NC-M(III)-CN- motif is provided by the [M(III)(CN)(6)](3-) moiety adopting a trans bridging mode between [Mn(III)(5-TMAMsalen)](3+) cations. The Mn(III) and M(III) ions occupy special crystallographic positions: a C(2) axis and an inversion center, respectively, forming a highly symmetrical chain with only one kind of cyano bridge. The Jahn-Teller axis of the Mn(III)(h.s.) ion is perpendicular to the N(2)O(2) plane formed by the 5-TMAMsalen tetradentate ligand. These Jahn-Teller axes are all perfectly aligned along the unique chain direction without a bending angle, although the chains are corrugated with an Mn-N(axis) -C angle of about 144°. In the crystal structures, the chains are well separated with the nearest inter-chain M???M distance being relatively large at 9?? due to steric hindrance of the bulky trimethylammoniomethyl groups of the 5-TMAMsalen ligand. The magnetic properties of these compounds have been thoroughly studied. Mn-Fe and Mn-Mn display intra-chain ferromagnetic interactions, whereas Mn-Cr is characterized by an antiferromagnetic exchange that induces a ferrimagnetic spin arrangement along the chain. Detailed analyses of both static and dynamic magnetic properties have demonstrated without ambiguity the single-chain magnet (SCM) behavior of these three systems, whereas Mn-Co is merely paramagnetic with S(Mn)=2 and D/k(B)=-5.3?K (D being a zero-field splitting parameter). At low temperatures, the Mn-M compounds with M=Fe, Mn, and Cr display remarkably large M versus H hysteresis loops for applied magnetic fields along the easy magnetic direction that corresponds to the chain direction. The temperature dependence of the associated relaxation time for this series of compounds systematically exhibits a crossover between two Arrhenius laws corresponding to infinite-chain and finite-chain regimes for the SCM behavior. These isostructural hetero-spin SCMs offer a unique series of alternating [-Mn-NC-M-CN-] chains, enabling physicists to test theoretical SCM models between the Ising and Heisenberg limits.  相似文献   

3.
The reaction of manganese(II) acetate, 1,1,1-tris(hydroxymethyl)methane (H3thme), and triethylamine in methanol leads to the formation of [Mn12O2(OMe)2(thme)4(OAc)10(H2O)4].2MeOH. The [Mn(III)4Mn(II)8] core consists of a central [Mn(III)4O6] rhombus sandwiched by two [Mn(II)4O7] fragments. Frequency-dependent ac susceptibility and hysteresis loops in the magnetization indicate single-molecule magnet behavior with a pure quantum-tunneling regime of relaxation below 0.2 K.  相似文献   

4.
Five Fe(III)Mn(III) bimetallic compounds [Fe(iqc)(CN)(3)][Mn(5-Xsalen)]·pMeOH·qMeCN·rH(2)O [Hiqc = N-(quinolin-8-yl)isoquinoline-1-carboxamide; salen = N,N'-ethylenebis(salicylideneiminato) dianion; X = H(2), F(3, 3a), Cl(4), Br(5)] were prepared by assembling a newly designed mer-Fe tricyanide (Ph(4)P)[Fe(iqc)(CN)(3)]·0.5H(2)O (1) and the respective Mn Schiff bases Mn(5-Xsalen)(+). Compounds 2-4 show linear chain structures in which trans-positioned cyanides of the Fe precursor bridge neighbouring Mn atoms, while 5 is a zigzag chain coordination polymer where two cyanide groups of the precursor in the cis mode act as bridges. The structural change from linear to zigzag may arise from the size effect of the halogens. The reversible structural transformation occurs between 3 and 3a upon the solvation-desolvation protocol and the corresponding magnetic behaviours are affected. Furthermore, in 4 and 5, the helical chains are established through hydrogen bonding of solvent molecules. From a magnetostructural point of view, within the linear chain system, the ferromagnetic coupling in 2, contrary to antiferromagnetic interactions in 3-4, is associated with the large torsion angle of C(eq)-Fe-Mn-N(O)(eq) (eq = equatorial) as well as almost the linear Mn-N≡C angle.  相似文献   

5.
A layered mixed-valence manganese complex, [Mn(II)(2)(bispicen)(2)(mu(3)-Cl)(2)Mn(III)(Cl(4)Cat)(2)Mn(III)(Cl(4)Cat)(2)(H(2)O)(2)](infinity), is synthesized and characterized structurally. It displays a slow magnetic relaxation and hysteresis effect.  相似文献   

6.
The reaction of [Fe(III)L(CN)(3)](-) (L being bpca = bis(2-pyridylcarbonyl)amidate, pcq = 8-(pyridine-2-carboxamido)quinoline) or [Fe(III)(bpb)(CN)(2)](-) (bpb = 1,2-bis(pyridine-2-carboxamido)benzenate) ferric complexes with Mn(III) salen type complexes afforded seven new bimetallic cyanido-bridged Mn(III)-Fe(III) systems: [Fe(pcq)(CN)(3)Mn(saltmen)(CH(3)OH)]·CH(3)OH (1), [Fe(bpca)(CN)(3)Mn(3-MeO-salen)(OH(2))]·CH(3)OH·H(2)O (2), [Fe(bpca)(CN)(3)Mn(salpen)] (3), [Fe(bpca)(CN)(3)Mn(saltmen)] (4), [Fe(bpca)(CN)(3)Mn(5-Me-saltmen)]·2CHCl(3) (5), [Fe(pcq)(CN)(3)Mn(5-Me-saltmen)]·2CH(3)OH·0.75H(2)O (6), and [Fe(bpb)(CN)(2)Mn(saltmen)]·2CH(3)OH (7) (with saltmen(2-) = N,N'-(1,1,2,2-tetramethylethylene)bis(salicylideneiminato) dianion, salpen(2-) = N,N'-propylenebis(salicylideneiminato) dianion, salen(2-) = N,N'-ethylenebis(salicylideneiminato) dianion). Single crystal X-ray diffraction studies were carried out for all these compounds indicating that compounds 1 and 2 are discrete dinuclear [Fe(III)-CN-Mn(III)] complexes while systems 3-7 are heterometallic chains with {-NC-Fe(III)-CN-Mn(III)} repeating units. These chains are connected through π-π and short contact interactions to form extended supramolecular networks. Investigation of the magnetic properties revealed the occurrence of antiferromagnetic Mn(III)···Fe(III) interactions in 1-4 while ferromagnetic Mn(III)···Fe(III) interactions were detected in 5-7. The nature of these Mn(III)···Fe(III) magnetic interactions mediated by a CN bridge appeared to be dependent on the Schiff base substituent. The packing is also strongly affected by the nature of the substituent and the presence of solvent molecules, resulting in additional antiferromagnetic interdinuclear/interchain interactions. Thus the crystal packing and the supramolecular interactions induce different magnetic properties for these systems. The dinuclear complexes 1 and 2, which possess a paramagnetic S(T) = 3/2 ground state, interact antiferromagnetically in their crystal packing. At high temperature, the complexes 3-7 exhibit a one-dimensional magnetic behavior, but at low temperature their magnetic properties are modulated by the supramolecular arrangement: a three-dimensional antiferromagnetic order with a metamagnetic behavior is observed for 3, 4, and 7, and Single-Chain Magnet properties are detected for 5 and 6.  相似文献   

7.
Seven cyanide-bridged bimetallic complexes have been synthesized by the reaction of [Fe(1-CH3im)(CN)5]2- with Mn(III) Schiff base complexes. Their crystal structure and magnetic properties have been characterized. Five complexes, [Mn2(5-Brsalen)2Fe(CN)5(1-CH3im)] x H2O (1), [Mn2(5-Clsalen)2(H2O)2Fe(CN)5(1-CH3im)] x H2O (2), [Mn2(5-Clsaltn)2(H2O)2Fe(CN)5(1-CH3im)] (3), [Mn2(5-Clsaltmen)2(H2O)2Fe(CN)5(1-CH3im)] x H2O (4), and [Mn2(5-Brsaltmen)2(H2O)2Fe(CN)5(1-CH3im)] x CH3OH (5), are neutral and trinuclear with two [Mn(SB)]+ (SB2- = Schiff base ligands) and one [Fe(1-CH3im)(CN)5]2-. Complex {[Et4N][Mn(acacen)Fe(CN)5(1-CH3im)]}n x 6nH2O (6) is one-dimensional with alternate [Mn(acacen)]+ and [Fe(CN)5(1-CH3im)]2- units. The two-dimensional complex {[Mn4(saltmen)4Fe(CN)5(1-CH3im)]}n[ClO4]2n x 9nH2O (7) consists of Mn4Fe units which are further connected by the phenoxo oxygen atoms. Magnetic studies show the presence of ferromagnetic Mn(III)-Fe(III) coupling in the trinuclear compounds with the magnetic coupling constant (J) ranging from 4.5 to 6.0 cm-1, based on the Hamiltonian H = -2JSFe(SMn(1) + SMn(2)). Antiferromagnetic interaction has been observed in complex 6, whereas ferromagnetic coupling occurs in complex 7. Complexes 6 and 7 exhibit long-range magnetic ordering with a TN value of 4.0 K for 6 and Tc of 4.8 K for 7. Complex 6 shows metamagnetic behavior at 2 K, and complex 7 possesses a hysteresis loop with a coercive field of 500 Oe, typical of a soft ferromagnet.  相似文献   

8.
Two new polynuclear heterometallic cluster complexes with [Mn(III)(3)M(II)Na] (M = Mn, Ca) core were synthesized using two in situ formed Schiff bases. The compounds were structurally characterized by single crystal X-ray analysis. The compound with [Mn(III)Ca(II)Na] appeared to catalyse water oxidation which was followed by using Clark electrode and online mass spectrometry.  相似文献   

9.
A Mn(III)(4)Ni(II)(4) molecular square exhibiting slow magnetization relaxation has been prepared from the reaction of a Mn(II)(4)Mn(III)(6)Mn(IV)(2) cluster and a simple Ni(II) source.  相似文献   

10.
The cyano-bridged trinuclear compound, (NEt(4))[Mn(2)(salmen)(2)(MeOH)(2)Fe(CN)(6)] (1) (salmen(2)(-) = rac-N,N'-(1-methylethylene)bis(salicylideneiminate)), reported previously by Miyasaka et al. (ref 19d) has been reinvestigated using combined ac and dc susceptibility measurements. The strong frequency dependence of the ac susceptibility and the slow relaxation of the magnetization show that 1 behaves as a single-molecule magnet with an S(T) = (9)/(2) spin ground state. Its relaxation time (tau) follows an Arrhenius law with tau(0) = 2.5 x 10(-)(7) s and Delta(eff)/k(B) = 14 K. Moreover, below 0.3 K, tau saturates around 470 s, indicating that quantum tunneling of the magnetization becomes the dominant process of relaxation. (NEt(4))[Mn(2) (5-MeOsalen)(2)Fe(CN)(6)] (2) (5-MeOsalen(2)(-) = N,N'-ethylenebis(5-methoxysalicylideneiminate)) is a heterometallic one-dimensional assembly made of the trinuclear [Mn(III)(SB)-NC-Fe(III)-CN-Mn(III)(SB)] (SB is a salen-type Schiff-base ligand) motif similar to 1. Compound 2 has two types of bridges, a cyano bridge (-NC-) and a biphenolate bridge (-(O)(2)-), connecting Mn(III) and Fe(III) ions and the two Mn(III) ions, respectively. Both bridges mediate ferromagnetic interactions, as shown by modeling the magnetic susceptibility above 10 K with g(av) = 2.03, J(Mn)(-)(Fe)/k(B) = +6.5 K, and J'/k(B) = +0.07 K, where J' is the exchange coupling between the trimer units. The dc magnetic measurements of a single crystal using micro-SQUID and Hall-probe magnetometers revealed a uniaxial anisotropy (D(T)/k(B) = -0.94 K) with an easy axis lying along the chain direction. Frequency dependence of the ac susceptibility and time dependence of the dc magnetization have been performed to study the slow relaxation of the magnetization. A mean relaxation time has been found, and its temperature dependence has been studied. Above 1.4 K, both magnetic susceptibility and relaxation time are in agreement with the dynamics described in the 1960s by R. J. Glauber for one-dimensional systems with ferromagnetically coupled Ising spins (tau(0) = 3.7 x 10(-)(10) s and Delta(1)/k(B) = 31 K). As expected, at lower temperatures below 1.4 K, the relaxation process is dominated by the finite-size chain effects (tau'(0) = 3 x 10(-)(8) s and Delta(2)/k(B) = 25 K). The detailed analysis of this single-chain magnet behavior and its two regimes is consistent with magnetic parameters independently estimated (J'and D(T)) and allows the determination of the average chain length of 60 nm (or 44 trimer units). This work illustrates nicely a new strategy to design single-chain magnets by coupling ferromagnetically single-molecule magnets in one dimension.  相似文献   

11.
The Schiff base compound 2,2'-{[(2-aminoethyl)imino]bis[2,1-ethanediyl-nitriloethylidyne]}bis-2-hydroxy-benzoic acid (H(4)L) as a proligand was prepared in situ. This proligand has three potential coordination pockets which make it possible to accommodate from one to three metal ions allowing for the possible formation of mono-, di-, and trinuclear complexes. Reaction of in situ prepared H(4)L with Dy(NO(3))(3)·5H(2)O resulted in the formation of a mononuclear complex [Dy(H(3)L)(2)](NO(3))·(EtOH)·8(H(2)O) (1), which shows SMM behavior. In contrast, reaction of in situ prepared H(4)L with Mn(ClO(4))(2)·6H(2)O and Dy(NO(3))(3)·5H(2)O in the presence of a base resulted in a trinuclear mixed 3d-4f complex (NHEt(3))(2)[Dy{Mn(L)}(2)](ClO(4))·2(H(2)O) (2). At low temperatures, compound 2 is a weak ferromagnet. Thus, the SMM behavior of compound 1 can be switched off by incorporating two Mn(II) ions in close proximity either side of the Dy(III). This quenching behavior is ascribed to the presence of the weak ferromagnetic interactions between the Mn(II) and Dy(III) ions, which at T > 2 K act as a fluctuating field causing the reversal of magnetization on the dysprosium ion. Mass spectrometric ion signals related to compounds 1 and 2 were both detected in positive and negative ion modes via electrospray ionization mass spectrometry. Hydrogen/deuterium exchange (HDX) reactions with ND(3) were performed in a FT-ICR Penning-trap mass spectrometer.  相似文献   

12.
A series of new dissymmetric chiral Schiff base complexes has been obtained by a systematic condensation of (1S,2S)(+)-diaminocyclohexane and 3-acetyl-4-hydroxy-6-methyl-2-pyrone with salicylaldehyde, 5-chloro-, 5-methoxy-and 5-nitrosalicylaldehyde and by subsequent metallation with manganese and ruthenium. The characterization of the complexes 1–8 was accomplished by physico chemical studies viz. microanalysis, IR-, UV/VIS-, and CD spectral studies, optical rotation, molar conductance measurements and cyclic voltammetry. Enantioselective epoxidation of non functionalised olefins, viz. cis-stilbene, trans-3-nonene and trans-4-octene with iodosyl benzene as oxidant was demonstrated in the presence of catalytic amounts of chiral Mn(III) and Ru(III) dissymmetric Schiff base complexes. Good optical yields of epoxides were obtained for the catalyst 4 with the substrates trans-3-nonene and cis-stilbene.  相似文献   

13.
The first high nuclearity, mixed-metal Bi(III)/Mn(IV) and Bi(III)/Mn(III) complexes are reported. The former complexes are [Bi(2)Mn(IV)(6)O(9)(O(2)CEt)(9)(HO(2)CEt)(NO(3))(3)] (1) and [Bi(2)Mn(IV)(6)O(9)(O(2)CPh)(9)(HO(2)CPh)(NO(3))(3)] (2) and were obtained from the comproportionation reaction between Mn(O(2)CR)(2) and MnO(4)(-) in a 10:3 ratio in the presence of Bi(NO(3))(3) (3 equiv) in either a H(2)O/EtCO(2)H (1) or MeCN/PhCO(2)H (2) solvent medium. The same reaction that gives 2, but with Bi(O(2)CMe)(3) and MeNO(2) in place of Bi(NO(3))(3) and MeCN, gave the lower oxidation state product [BiMn(III)(10)O(8)(O(2)CPh)(17)(HO(2)CPh)(H(2)O)] (3). Complexes 1 and 2 are near-isostructural and possess an unusual and high symmetry core topology consisting of a Mn(IV)(6) wheel with two central Bi(III) atoms capping the wheel on each side. In contrast, the [BiMn(III)(10)O(8)](17+) core of 3 is low symmetry, comprising a [BiMn(3)(μ(3)-O)(2)](8+) butterfly unit, four [BiMn(3)(μ(4)-O)](10+) tetrahedra, and two [BiMn(2)(μ(3)-O)](7+) triangles all fused together by sharing common Mn and Bi vertices. Variable-temperature, solid-state dc and ac magnetization data on 1-3 in the 1.8-300 K range revealed that 1 and 2 possess an S = 0 ground state spin, whereas 3 possesses an S = 2 ground state. The work offers the possibility of access to molecular analogs of the multifunctional Bi/Mn/O solids that are of such great interest in materials science.  相似文献   

14.
By using 2'-hydroxyacetophenoxime, a new family of complexes with an [Mn(III)(2)Mn(IV)(3)Ln(5)O(5)] core was obtained with Ln = Tm (1), Lu (2), and Yb (3). Heterometallic Mn/Tm and Mn/Lu combinations have had no precedence so far. Studies of the magnetic properties indicate the presence of intracomplex antiferromagnetic interactions in 1 and 3, as well as a dominating ferromagnetic interaction between Mn(III) and Mn(IV) spins in 2, leading to an S(T) = 5/2 ground state.  相似文献   

15.
A new cyanido-bridged Re(IV)-Mn(III) heterometallic 1D system, [Mn(III)(5-Me-saltmen)](2)[Re(IV)Cl(4)(CN)(2)]·3CH(3)CN (), was designed and structurally characterized. Interchain interactions stabilize a canted antiferromagnetic ordered state below 6.2 K that does not prevent slow relaxation of the magnetization reminiscent of the single-chain magnet properties of the individual chains.  相似文献   

16.
We study the orbitally dependent magnetic exchange in cyanide-based clusters as a source of the barrier for reversal magnetization. We consider the Mn(III)-CN-Mn(II) dimer and linear Mn(II)-NC-Mn(III)-CN-Mn(II) trimer containing octahedrally coordinated Mn(III) and Mn(II) ions with special emphasis on the magnetic manifestations of the orbital degeneracy of the Mn(III) ion. The kinetic exchange mechanism involves the electron transfer from the single occupied t(2) orbitals of the Mn(II) ion [6A1(t2(3)e2) ground state] to the singly occupied t(2) orbitals of the Mn(III) ion [3T1(t2(4)) ground state] resulting in the charge-transfer 5T2(t2(2)e2)Mn(III) - 2T2(t2(5))Mn(II) state of the pair. The deduced effective exchange Hamiltonian that takes into account orbital degeneracy leads to an essentially non-Heisenberg energy pattern. The energy levels are shown to be dependent on both spin and orbital quantum numbers, thus providing direct information about the magnetic anisotropy of the system. Along with the magnetic exchange, the model includes an axial component of the crystal field and spin-orbit coupling operating within the ground 3T1(t2(4)) cubic term of the Mn(III) ion. We have shown that under certain conditions both named interactions lead to the occurrence of the barrier for the reversal of magnetization, which significantly increases when passing from the dimer to the trimer. This provides a possible way for raising the magnetic barrier in the family of cyano-bridged manganese clusters.  相似文献   

17.
New complex [Mn (SB)2(DMF)2] [W (CN)8] hereafter referred to as complex 1 , which was prepared by self–assembly of [Mn (SB)2(DMF)2]3+ and [W (CN)8]3− and structurally characterized by elemental analysis, infrared (IR) and single crystal X–ray techniques (H2SB is Schiff base derived from the condensation of salicylaldehyde and N,N–diethylethylenediamine and DMF is dimethylformamide). The structure consists of 1–D supramolecular chains and further stacks to give a 3–D supramolecular architecture whose molecular fragments are linked by hydrogen bond as well as C − H···π interactions between [Mn (SB)2(DMF)2]3+ and [W (CN)8]3−. An underlying net for the representation consists of two types of fragments with 1,4 M5–1 and 1,8 M9–1 topologies and further illustration of the molecular network in terms of a graph−theory approach using simplification procedure resulted in the underlying net of 2C1topological type in the complex 1 . Magnetic susceptibility measurements of complex 1 was carried out in the temperature range 2–300 K, indicates the presence of either magnetic anisotropy zero field splitting, the effect of intramolecular interactions, or both. Complex 1 follows the Curie–Weiss law with Curie constant value of 3.43 cm3mol−1K, and the slight negative Weiss constant (−0.60 K) value indicates the predominant antiferromagnetic magnetic exchange interactions. The magnetic properties of Title complex was investigated thoroughly and showed that ferromagnetic interaction between W(V) and Mn (III) operate via the intramolecular H–bonding interaction between cyanide nitrogens and a hydrogen atom.  相似文献   

18.
The ability of NCNH(-) to construct transition metal coordination polymers and to transmit magnetic coupling was investigated. By introduction of various tetradentate Schiff base ligands (L) and different solvents (S), nine NCNH(-)-bridged manganese(III) coordination complexes were obtained. Their structures can be divided into three types: I) NCNH-bridged chains built on mononuclear [Mn(III)(L)] units, [Mn(III)(L)(mu(1,3)-NCNH)](n) (L=5-Brsalen (1), 5-Clsalen (2)); II) NCNH-bridged chains built on dinuclear [Mn(III) (2)(L)(2)] units, complexes 3-8, [Mn(III) (2)(L)(2)(mu(1,3)-NCNH)]ClO(4)S (L=salen, 5-Fsalen, 5-Clsalen, 5-OCH(3)salen; S=CH(3)OH or C(2)H(5)OH); III) NCNH-bridged Mn(III) dimers linked by hydrogen bonds into a 1D polymer, {[Mn(III)(3-OCH(3)salen)(H(2)O)](2)(mu(1,3)-NCNH)}ClO(4) x 0.5 H(2)O (9, salen=N,N'-bis(salicylidene)-1,2-diaminoethane). In these complexes, the N[triple chemical bond]C--NH(-) resonance structure dominates the bonding mode of the NCNH(-) ligand adopting the mu(1,3)-bridging mode. Magnetic characterization shows that the asymmetric NCNH(-) bridge transmits antiferromagnetic interaction between Mn(III) ions and often favors the weak ferromagnetism caused by spin canting in these one-dimensional chains. However, these complexes exhibit different magnetic behaviors at low temperatures.  相似文献   

19.
The structures and magnetic properties of four isomorphous nonanuclear heterometallic complexes [Na(2){Mn(3)(III)(μ(3)-O(2-))}(2)Ln(III)(hmmp)(6)(O(2)CPh)(4)(N(3))(2)]OH·0.5 CH(3)CN·1.5H(2)O are reported, where Ln(III) = Eu (1), Gd (2), Tb (3) and Dy (4), H(2)hmmp = 2-[(2-hydroxyethylimino)methyl]-6-methoxyphenol. Complexes 1-4 were prepared by the reactions of hmmpH(2) with a manganese salt and the respective lanthanide salt together with NaO(2)CPh and NaN(3). Single-crystal X-ray diffraction analyses reveal that the six Mn(III) and one Ln(III) metal topology in the aggregate can be described as a bitetrahedron. The two peripheral [Mn(III)(3)(μ(3)-O(2-))](7+) triangles are each bonded to a central Ln(III) ion with rare distorted octahedral geometry. The magnetic properties of all the complexes were investigated using variable temperature magnetic susceptibility and both antiferromagnetic and ferromagnetic interactions exist in the [Mn(III)(3)(μ(3)-O(2-))](7+) triangle. Weak ferromagnetic exchange between the Ln(III) and Mn(III) ions has been established for the corresponding Gd derivative. The Gd, Tb and Dy complexes show no evidence of slow relaxation behaviour above 2.0 K.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号